
140

Incremental Type-Checking for Free
Using Scope Graphs to Derive Incremental Type-Checkers

ARON ZWAAN, Delft University of Technology, Netherlands
HENDRIK VAN ANTWERPEN, Delft University of Technology, Netherlands
EELCO VISSER†, Delft University of Technology, Netherlands

Fast analysis response times in IDEs are essential for a good editor experience. Incremental type-checking
can provide that in a scalable fashion. However, existing techniques are not reusable between languages.
Moreover, mutual and dynamic dependencies preclude traditional approaches to incrementality. This makes
finding automatic approaches to incremental type-checking a challenging but important open question.

In this paper, we present a technique that automatically derives incremental type-checkers from type
system specifications written in the Statix meta-DSL. We use name resolution queries in scope graphs (a
generic model of name binding embedded in Statix) to derive dependencies between compilation units. A
novel query confirmation algorithm finds queries for which the answer changed due to an edit in the program.
Only units with such queries require reanalysis. The effectiveness of this algorithm is improved by (1) splitting
the type-checking task into a context-free and a context-sensitive part, and (2) reusing a generic mechanism to
resolve mutual dependencies. This automatically yields incremental type-checkers for any Statix specification.

Compared to non-incremental parallel execution, we achieve speedups up to 147x on synthetic benchmarks,
and up to 21x on real-world projects, with initial overheads below 10%. This suggests that our framework can
provide efficient incremental type-checking to the wide range of languages supported by Statix.

CCS Concepts: • Software and its engineering → Incremental compilers; • Theory of computation →
Program analysis; Program semantics.

Additional Key Words and Phrases: type-checker, incremental type-checking, scope graphs, type systems,
name binding, reference resolution, Statix

ACM Reference Format:
Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser. 2022. Incremental Type-Checking for Free: Using
Scope Graphs to Derive Incremental Type-Checkers. Proc. ACM Program. Lang. 6, OOPSLA2, Article 140
(October 2022), 38 pages. https://doi.org/10.1145/3563303

1 INTRODUCTION
Many useful features of an IDE, such as inline error messages, code navigation and refactorings,
use information from a type-checker. To provide an optimal editor experience, this type informa-
tion needs to be available fast [Chaudhuri et al. 2017]. Unfortunately, as type-checking can be
computationally expensive, fast editor response times are non-trivial to achieve on larger projects.
To retain short feedback times for large projects, we need approaches to type-checking that have
execution times proportional to the size of a change to a project, rather than to the project size
†Eelco worked on this paper until his untimely passing on April 5, 2022.

Authors’ addresses: Aron Zwaan, Software Technology, Delft University of Technology, Delft, Netherlands, a.s.
zwaan@tudelft.nl; Hendrik van Antwerpen, Software Technology, Delft University of Technology, Delft, Netherlands,
h.vanantwerpen@tudelft.nl; Eelco Visser, Software Technology, Delft University of Technology, Delft, Netherlands,
e.visser@tudelft.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2475-1421/2022/10-ART140
https://doi.org/10.1145/3563303

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

HTTPS://ORCID.ORG/0000-0002-1818-4245
HTTPS://ORCID.ORG/0000-0001-5117-0921
HTTPS://ORCID.ORG/0000-0002-7384-3370
https://doi.org/10.1145/3563303
https://orcid.org/0000-0002-1818-4245
https://orcid.org/0000-0001-5117-0921
https://orcid.org/0000-0002-7384-3370
https://doi.org/10.1145/3563303

140:2 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

itself. Incremental type-checking is an established approach to providing this [Busi et al. 2019;
Pacak et al. 2020]. When a program is changed, incremental type-checkers reuse analysis results of
unaffected code parts, and reanalyze only code parts affected by the change. This reduces analysis
time, leading to a better editor experience.
Although incremental type-checking is highly beneficial for programmers, it is currently not

a feature most type-checkers have. This is due to the fact that incremental type-checkers are
challenging to implement soundly. We believe it is essential to design strategies to incrementalize
type-checkers automatically. This requires principled and widely applicable solutions to fundamen-
tal challenges for incremental type-checking, which do not exist yet [Pacak et al. 2020]. Concrete
implementations are often designed for a specific language [Chaudhuri et al. 2017; Eclipse 2021;
Meertens 1983] or type-checker paradigm [Erdweg et al. 2015], or require substantial manual effort
to apply [Busi et al. 2019]. Transferring these approaches between languages is non-trivial. Even
the promising approach of Pacak et al. [2020] has only been applied to small toy languages. Thus,
our goal is to provide a principled, automatic approach to incrementalize type-checkers that can be
applied for real-world languages.

To achieve this, we present an approach that incrementalizes execution of type-checkers based
on the Statix meta-language for type system specification [Van Antwerpen et al. 2018]. In this
DSL, type systems can be expressed as declarative typing rules. The name binding structure of a
program is represented by a scope graph [Néron et al. 2015] and name lookup is modeled using
queries in that graph. Statix has an operational semantics [Rouvoet et al. 2020], implemented as a
constraint solver, which turns a type system specification into an executable type-checker.
Van Antwerpen and Visser [2021] introduce the notion of compilation units to scope graphs.

In their model, each compilation unit has its own type-checker and scope graph. Type-checkers
can do lookups in other units by querying their scope graph. This approach allows executing
scope-graph-based type-checkers concurrently, with compilation unit granularity.
The key insight of the current paper is that queries represent dependencies between units. By

tracing whether query results remain unchanged when a unit is edited, called query confirmation,
we decide which results can be reused. Units without changed query answers are not affected by the
edit, and hence do not need to be reanalyzed. On the other hand, when a query of a unit returns a
different result, its typing might change. Thus, we reanalyze such units. While query confirmation is
not necessarily much faster than re-executing the query, it only needs to be computed for incoming
queries of reanalyzed units. Therefore, our approach saves computation time on queries in reused
units, as well as on other type-checker tasks. Although this strategy incrementalizes type-checking
with only compilation unit granularity, it is sound, and it can be applied to any Statix specification
with minimal attention from the type system designer. This is a step towards the goal of principled
and widely applicable approaches to incremental type-checking.

In summary, the contributions of this paper are as follows:
• We show how query confirmation can discover which Statix name-resolution query answers
change when a source program is edited, and how it can be used to execute Statix-based
type-checkers incrementally (Sections 3 and 4).

• We show how splitting type-checking into a context-free and context-sensitive part improves
precision of a confirmation-based incremental algorithm (Section 5).

• We show how cyclic dependency detection and resolution (based on deadlock detection in the
framework of Van Antwerpen and Visser [2021]) allows incrementalizing the type-checking
of mutually dependent compilation units, while saving significant computation time for
query confirmation in unchanged units (Section 6).

• We show how scope graph diffing makes query confirmation applicable for type-checkers
with non-deterministic scope identities, such as Statix (Section 7).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:3

• We integrated an incremental Statix solver based on our algorithm in the Spoofax Language
Workbench [Kats and Visser 2010].

• We evaluate our framework, showing that, for real-world projects, it requires only 10%
overhead on initial runs compared to the original framework, while providing up to 147x
speedup on synthetic benchmarks, and up to 21x speedup on real-world projects (Section 8).

The algorithm is built up gradually throughout the sections. A complete overview is provided in
Appendix A. Appendix B gives detailed but non-essential information about the benchmarks. The
source code and benchmarks are available in the accompanying artifact [Zwaan et al. 2022].

2 BACKGROUND: TYPE-CHECKING MULTI-UNIT PROJECTS WITH SCOPE GRAPHS

scopes 𝑠 ∈ S
labels 𝑙 ∈ L
edges 𝑒 ∈ E := 𝑠 · 𝑙 · 𝑠
data 𝑑 ∈ D

scope graph G := ⟨𝑆 ⊂ S, 𝐸 ⊂ E, 𝜌 ∈ S → D⟩
label regex r ∈ R ⊂ L∗

data wf D ⊂ D
paths 𝑝 ∈ P := 𝑠 | 𝑝 · 𝑙 · 𝑠

queries 𝑞 ∈ Q := ⟨𝑝, r,D⟩
answers 𝐴 ∈ A :=P(P × D)

Fig. 1. Scope graph definitions

Ourwork builds upon a Statix solver that uses
the concurrent type-checker framework pre-
sented by Van Antwerpen and Visser [2021].
In their framework, type-checkers of each
compilation unit are isolated apart from name
lookup. It gives us enough control over name
lookup to implement our restart strategy, and
provides natural units of computation to in-
crementalize as well. In this section, we in-
troduce the main concepts of their frame-
work: scope graphs, compilation units and
their APIs.

2.1 Name Binding using Scope Graphs
Scope graphs [Néron et al. 2015; Van Antwerpen et al. 2018], defined in Fig. 1, are a framework for
modeling name binding patterns. In this model, scopes in a program are represented by nodes 𝑠
in a graph G. Visibility relations between scopes are modeled with labeled directed edges 𝑒 . For
example, when 𝑠0 is the lexically surrounding scope of 𝑠1, there will typically be a LEX-labeled edge
from 𝑠1 to 𝑠0. Declarations are modeled using scopes that have an associated datum 𝑑 . For instance,
a declaration of a variable x in 𝑠0 could be modeled using a VAR-labeled edge from 𝑠0 to another
scope 𝑠𝑥 , where x is the datum associated with 𝑠𝑥 (modeled as 𝜌 (𝑠𝑥) = x).

Information from the scope graph can be retrieved using queries. A query 𝑞 takes the following
three arguments: a path prefix 𝑝 that was previously traversed, a regular expression r that describes
valid paths, and a data well-formedness predicateD. Executing these queries will return an answer𝐴
that contains all resolution paths (𝑝, 𝑑). A path consists of the sequence of edges in the scope graph
that led from a reference to a matching declaration. They are defined as alternating sequences
of scopes and labels, paired with a datum, such that (1) the path is an extension of the the 𝑝

argument of the query (i.e., 𝑝 is a prefix of the paths in the answer), (2) each step in the path has a
corresponding edge in the scope graph, (3) the sequence of labels in the path is in the language
described by a regular expression r (called the path well-formedness predicate), and (4) the datum 𝑑

is associated with the rightmost scope 𝑠𝑟 , and is well-formed (i.e., 𝜌 (𝑠𝑟) = 𝑑 and 𝑑 ∈ D).
We illustrate how scope graphs work with an example Java program in a simplified Java specifi-

cation. Fig. 2 shows the program and its corresponding scope graph. Scope 𝑠𝑝 is the global scope,
and scopes 𝑠𝐴 and 𝑠𝐵 represent the scopes of classes A and B, respectively. To make them identifiable
as such, their name is associated as data (e.g., 𝜌 (𝑠𝐴) = A). Both classes are connected to the global
scope using an edge with a CLS label. This indicates that 𝑠𝐴 and 𝑠𝐵 model classes in 𝑠𝑝 . Conversely,
both classes point to 𝑠𝑝 with a LEX label, indicating that the package scope is their lexical parent.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:4 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

class A {
int x = 42;

}

class B extends A {
int foo(int y) {

return x * y
}

}

𝑠𝑝

𝑠𝐴 ↦→ A 𝑠𝑥 ↦→ xFLD 𝑠𝑇 (𝑥) ↦→ intTYPE

𝑠𝐵 ↦→ B

𝑠𝑓 ↦→ foo

MTHD

𝑠𝑇 (𝑓) ↦→ fun([int], int)TYPE

𝑠𝑏LEX 𝑠𝑦 ↦→ yVAR 𝑠𝑇 (𝑦) ↦→ intTYPE

EXT

LEX

LEX

CLS

CLS

𝑞1 = ⟨𝑠𝑝 ,CLS,DA ⟩ 𝑞2 = ⟨𝑠𝐵, LEX∗EXT∗ (FLD |VAR),Dx ⟩

𝑢𝐴

𝑢𝐵

𝑢𝑝

Fig. 2. Example Java program, its scope graph representation, and compilation units.

Before explaining the remainder of the graph, let us look at an example query 𝑞1 that resolves
reference A in the part of the graph we discussed so far. The first parameter of 𝑞1 is 𝑠𝑝 , which is the
scope in which the query starts. The regular expression CLS indicates that only paths with a single
CLS edge are valid for this query. (For simplicity, we ignore the possibility of imports in Java here.)
Finally, the data well-formedness condition DA ensures the query only returns paths of which the
target scope has a datum A. As expected, the query resolves to 𝑠𝐴, which is shown by the red dashed
line. This is the only valid path, as the path to 𝑠𝐵 is excluded because its datum is not well-formed
with respect to DA, and there are no other paths from 𝑠𝑝 that match the regular expression CLS.

In this way, the type-checker of unit B can obtain a reference to 𝑠𝐴. This reference is used to
model the extends A clause by creating an EXT edge from 𝑠𝐵 to 𝑠𝐴. Scopes 𝑠𝑓 and 𝑠𝑥 model the
declarations of the method foo and field x, respectively. These declarations work similar to class
declarations: the name is associated with the scope, and an appropriate label (MTHD and FLD) is
used to make the declaration reachable from its enclosing scope. The types of these declarations
are modeled using separate scopes (𝑠𝑇 (𝑥) and 𝑠𝑇 (𝑓)), which are associated with the type as data.
TYPE-labeled edges connect the types to the declaration scopes they correspond to.

Finally, scope 𝑠𝑏 corresponds to the body of the method foo. The LEX edge to 𝑠𝐵 models that 𝑠𝐵
is the lexically enclosing scope of 𝑠𝑏 . In 𝑠𝑏 , method argument y is declared in a style similar to A.x.
In blue, query 𝑞2 for reference x is shown. This query starts in 𝑠𝑏 , as the reference occurs in the
body of foo. The path well-formedness condition LEX∗EXT∗ (FLD|VAR) specifies that any number
of LEX edges can be traversed, allowing lookup in enclosing scopes. After that, any number of EXT
edges can be traversed to lookup names in superclasses. Eventually, the path must resolve over a
FLD or a VAR edge. The data well-formedness condition Dx ensures that only declarations with
name x are included. The resolution path for this query shows how the reference resolves to A.x.

2.2 Scope Graphs for Compilation Units
The scope graph model has been refined by Van Antwerpen and Visser [2021] in two ways.
Conceptually, they make the notion of compilation units explicit in the hierarchical compilation
unit model. In addition, they present a framework that uses this notion to type-check compilation
units concurrently. As our incremental algorithm is an extension of this framework, we explain
both concepts in this section and the next.

In the hierarchical compilation unit model, each project is divided into a set of units 𝑢 ∈ U. Each
unit has its own local scope graph G𝑢 , instead of a single project-level one. Given a scope or an
edge, its owning unit can be retrieved using the owner(𝑠) = 𝑢 projection. To model the structure of
real-world projects, units are organized hierarchically. That is, each unit except the root unit has a
single parent, denoted as parent(𝑢) = 𝑢′.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:5

AST1 Solver1 Unit1

Spec...

Solver𝑛AST𝑛 Unit𝑛

msg

API

API

Fig. 3. Framework architecture

interface TypeChecker
async fun Run(𝑆) : T

interface CompilationUnit
fun FreshScope(𝑑) : S
fun AddEdge(𝑠 , 𝑙 , 𝑠′)
fun CloseEdge(𝑠 , 𝑙)
async fun Query(𝑠 , r , D) : A

𝑚𝑠𝑔 := AddEdge : S × L × S
| CloseEdge : S × L
| Query : Q → A

Fig. 4. Concurrent protocol

To model real-world projects, scope graphs of units cannot be fully disjoint. After all, a module in
a particular compilation unit may be visible in the package (i.e., its parent unit) in which it resides.
This is modeled using shared scopes, which are scopes that a unit shares with a subunit. The subunit
can use such scopes to query its context, and can add edges to these shared scopes. This allows the
subunit to create declarations in its parent unit, exposing itself in its immediate context.

Fig. 2 illustrates this model. In this example, there are three compilation units, indicated by dotted
boxes, with their names in the top right corners. The outer box represents the project compilation
unit, while the inner boxes represent its subunits, the classes. Each scope is owned by the innermost
unit that contains it. For example, 𝑠𝑝 is owned by the project unit 𝑢𝑝 , while 𝑠𝐴 is owned by unit 𝑢𝐴.
The edges are owned by the innermost unit that contains its label. For example, the 𝑠𝑝 · CLS · 𝑠𝐵 and
𝑠𝐵 · EXT · 𝑠𝐴 edges are both owned by unit 𝑢𝐵 . In this example, 𝑢𝑝 shared 𝑠𝑝 with 𝑢𝐴 and 𝑢𝐵 . This
can be recognized from the fact that both CLS edges are owned by one of the subunits of 𝑢𝑝 . In
addition, 𝑞1 illustrates how shared scopes allow lookup into other units.

2.3 Executing Type-Checkers Concurrently
The hierarchical compilation unit model is used to implement a type-checker framework that
allows type-checking units concurrently. The architecture of this framework is shown in Fig. 3.
Each compilation unit is split into two components: a unit and a type-checker. In our case, the
type-checker is a constraint solver using a Statix specification. The unit maintains the scope graph
of the compilation unit, and executes queries in it. The solver performs all other type-checking
related tasks, such as solving constraints, maintaining a unifier and emitting error messages.
The protocol that the unit and the type-checker use to coordinate is captured in the interfaces
shown in the top half of Fig. 4. When type-checking starts, the unit invokes the Run method of
the type-checker. The shared scopes 𝑆 are passed as argument, and a typing 𝑇 ∈ T is returned
asynchronously. Conversely, the type-checker can manipulate the scope graph using the methods
in the CompilationUnit interface. The FreshScope method creates a new scope 𝑠 with associated
datum 𝑑 (i.e., 𝑠 ∈ 𝑆𝑢 , owner(𝑠) = 𝑢 and 𝜌𝑢 (𝑠) = 𝑑). Similarly, AddEdge allows the type-checker to
add edges to the local scope graph. Last, the Query method computes a query answer1.
Additionally, units communicate with each other by message passing, following the actor par-

adigm [Agha 1990]. The messages that units exchange are shown in the bottom half of Fig. 4.
The Query message is used to resolve queries in other compilation units. For example, when the
1In fact, Query has a few additional arguments related to shadowing and local inference. Because we do not take shadowing
into account in this paper, for reasons explained in Section 4.2, we omit all shadowing-related arguments here. The local
inference arguments are omitted because only non-local queries are relevant for our algorithm.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:6 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

type-checker for class B in Fig. 2 issues 𝑞1, unit 𝑢𝐵 discovers that it cannot resolve it locally, because
it does not own 𝑠𝑝 . Therefore, it forwards the query to 𝑢𝑝 , as 𝑢𝑝 is the owner of 𝑠𝑝 . However, to
resolve the query correctly, 𝑢𝑝 also needs to know that 𝑢𝐴 added a class declaration to 𝑠𝑝 . For that
reason, compilation units also forward the addition of edges in shared scopes to their parent unit
using the AddEdge message. For example, when the type-checker of class A adds edge 𝑠𝑝 · CLS · 𝑠𝐴
by invoking AddEdge(𝑠𝑝 , CLS, 𝑠𝐴), 𝑢𝐴 will send an AddEdge(𝑠𝑝 , CLS, 𝑠𝐴) message to 𝑢𝑝 . This allows
correct query resolution in shared scopes.
Finally, the framework supports stable query resolution in incomplete scope graphs. That means

that it can answer queries during type-checking, while guaranteeing that resolving the query in
the complete graph would return the same result. A sound solution to this problem for Statix
was presented by Rouvoet et al. [2020], and generalized by Van Antwerpen and Visser [2021].
Slightly simplified2, it works as follows. Each unit maintains a multiset of scope-label pairs𝑂 . When
(𝑠, 𝑙) ∈ 𝑂 , then a type-checker might still add edges with label 𝑙 to 𝑠 . Initially,𝑂 contains (𝑠, 𝑙) 𝑛 + 1
times for each scope and label, given that 𝑠 is shared with 𝑛 subunits. Once the type-checker of unit
𝑢 added all edges for a label 𝑙 to 𝑠 , it will invoke CloseEdge(𝑠 , 𝑙). If 𝑢 owns 𝑠 , it will remove (𝑠, 𝑙)
from𝑂 once. Otherwise, it will send a CloseEdge(𝑠, 𝑙) message to its parent, which will then remove
(𝑠, 𝑙) from 𝑂 once. Eventually, when all edges are closed, 𝑂 is empty. When query resolution needs
to traverse edges with label 𝑙 in scope 𝑠 , it waits until (𝑠, 𝑙) ∉ 𝑂 .

async fun Resolve(𝑞 = ⟨𝑝, r,D⟩) : A
𝐴 := ∅, 𝑠𝑡 := target(𝑝), 𝑢 := owner(𝑠𝑡)
if 𝑢 ≠ self then

return send Query(𝑞) to 𝑢
if 𝜀 ∈ lang(r) ∧ 𝜌 (𝑠𝑡) ∈ D then

𝐴′ += (𝑝, 𝜌 (𝑠𝑡))
foreach 𝑙 ∈ L such that 𝜕𝑙 r ≠ ∅ do

𝑆 ′ := await getEdges(𝑠𝑡 , 𝑙,G)
𝐴′ := { Resolve(𝑝 · 𝑙 · 𝑠, 𝜕𝑙 r,D) | 𝑠 ∈ 𝑆 ′ }
𝐴 += awaitAll 𝐴′

return 𝐴

Fig. 5. Query resolution algorithm

The algorithm that resolves a query is shown in
Fig. 5. If the target 𝑠𝑡 of the current path prefix 𝑝

is not owned by the current unit, the query is for-
warded to its owner using a Query(𝑞) message. Oth-
erwise, the current path is included in the query
answer 𝐴 if it would be accepted by the original
regular expression and its datum is well-formed.
In addition, all outgoing edges of 𝑠𝑡 with valid la-
bels are traversed. A label is valid if the language of
its Brzozowski derivative [Brzozowski 1964] 𝜕𝑙 r is
non-empty. For all valid labels, the target scopes of
the outgoing edges are retrieved using the getEdges
function. This function waits for 𝑙 to be closed in 𝑠𝑡
(i.e., (𝑠𝑡 , 𝑙) ∉ 𝑂), and then returns all target scopes
of the outgoing 𝑙-labeled edges of 𝑠𝑡 . For each target, a residual query is executed. This query uses
the old path prefix 𝑝 extended with the label and target scope as new path argument. Moreover, 𝜕𝑙 r
is used as the new path-wellformedness condition, because a step with label 𝑙 was added to the
path. This ensures that the labels of fully resolved paths match the initial regex. Van Antwerpen
and Visser [2021] show that this resolution algorithm returns stable query answers.

3 ALGORITHM OUTLINE
In this section, we introduce some notational conventions, and give an high-level overview of our
incremental algorithm, presented using the actor framework [Agha 1990]. This overview will be
refined in Sections 4 to 7.

Notation. We use the following notational conventions:
• The proc keyword is used to indicate procedures that modify the actor state, whereas the
fun keyword is used for pure functions.

2For the full version of the protocol, which additionally makes scope sharing explicit, gives more precise control over which
labels𝑂 is initialized with and allows multi-level sharing, we refer to Van Antwerpen and Visser [2021].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:7

activeStart

unknownHold

done

released

msg
Re

st
ar
t

Confirm

Release

Fig. 6. Unit state diagram

actor Unit (TC : TypeChecker) : CompilationUnit
proc Start(𝑆)

𝑇𝑛 := RunTC(𝑆)

proc Hold(𝑆)
𝐶 := { send Confirm(𝑞) to 𝑢 | (𝑢, 𝑞) ∈ 𝑄𝑛−1 }
if

∧
awaitAll 𝐶 then Release(𝑆)

else Restart(𝑆)
proc Release(𝑆)

G𝑛 := G𝑛−1, 𝑄𝑛 := 𝑄𝑛−1, 𝑇𝑛 := 𝑇𝑛−1
foreach (𝑠, 𝑙) ∈ 𝑆 × L do CloseEdge(𝑠 , 𝑙)

proc Restart(𝑆)
𝑇𝑛 := RunTC(𝑆)

Fig. 7. Algorithm outline

• The self and parent keywords indicate the current actor and its parent, respectively.
• Actors can send messages to other actors using the send msg to 𝑢 syntax. Incoming message
handlers are indicated by the on receive msg construct. In a message receiving context, the
sender can be retrieved using the sender keyword. Return statements in message handlers
deliver the returned value as an answer to the original sender.

• Units can wait for a message answer with the await keyword. An await pauses the function
until the message is answered. A list of expected replies can be awaited using awaitAll.
Waits are non-blocking: the actor can handle other messages and replies while waiting. The
async keyword indicates that a function might internally wait for a message reply. Finally,
awaits can be used to wait until a unit is in a particular state as well.

• Where relevant, functions are annotated with their return type. A type can be a set, a tuple
of types or a powerset of another type. In addition, we use 𝑇 ? for optional types, where ⊥
represents the none value. We distinguish between ⊥ and ‘real’ return values in if-statements.

• Finally, an 𝑛 subscript denotes that the subscripted value corresponds to the current type-
checker iteration, whereas 𝑛 − 1 indicates the value is an output of the previous analysis.

• Such subscripted values are generally part of the actor state, which is accessible everywhere.
Current actor state values can be modified in procedures.

Algorithm Outline. Our idea relies on the observation that a type-checker result is determined
completely by the AST of the compilation unit, and the results of external name lookups. Thus, a
type-checker result can be reused if its AST and external name lookups do not change. The input
of the algorithm contains which units are edited, while it provides a way to decide which query
answers changed. This is used to reanalyze the appropriate units.
The algorithm implements the state diagram in Fig. 6. The labels on the edges indicate the

procedures that implement the transitions, which are explained in the following sections. Units
that are edited start in the active state, which means that they are currently reanalyzed. When
the type-checker is finished, the unit transitions to the done state. This means that there is a new
type-checker result for this unit. A unit that is not edited starts in the unknown state. In this state
it is not yet decided whether the unit must be reanalyzed, as one of its dependencies might be
changed in a way that invalidates the current result. If an invalidating change is detected, the
unit transitions to the active state, in which it is reanalyzed. Otherwise, the unit transitions to the
released state, which means the previous result can be reused.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:8 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

An outline of the algorithm is shown in Fig. 7. The Start procedure, called for edited units,
simply executes the type-checker with the shared scopes 𝑆 . Unchanged units execute the Hold
procedure, which checks for external changes that invalidate the previous result as follows. For
each query 𝑞 executed in the previous iteration, a Confirm : 𝑄𝑛−1 → Bool message is sent to the
original receiver of the query (𝑢). If ⊥ is returned in reply, the answer to the query changed, and
the unit must be reanalyzed. In such cases, the type-checker is re-executed. Otherwise, if all replies
contain ⊤, none of the inputs to its type-checker changed, and thus the unit is released. Releasing
means that the previous scope graph, set of recorded queries, and type-checker result are reused.
In addition, all labels are closed in the shared scopes, enabling query resolution to proceed.

4 DETECTING CHANGED QUERIES USING ENVIRONMENT DIFFING
The algorithm outline in the previous section left two questions unanswered. First, we assumed a
variable 𝑄𝑛−1 contained all queries of the previous type-checker iteration, but did not show how
those were obtained. Second, we did not explain how the answer to an incoming Confirm message
is computed. In this section, we define non-local queries, and show how those are recorded. In
addition, we present our query confirmation algorithm, and show how it is used to answer Confirm
messages. The section concludes with an example illustrating both concepts.

4.1 WhichQueries Require Confirmation?
A key ingredient for our algorithm is confirming the queries that led to a previous result. However,
we only need to confirm queries that other units contribute to, as those queries represent depen-
dencies on other units. External influence occurs when query resolution traverses a scope that
another unit can add edges to. We call such scopes non-local with respect to unit 𝑢, defined as:

non-local𝑢 (𝑠) =Δ owner(𝑠) ≠ 𝑢 ∨ (∃𝑢′ . parent(𝑢′) = 𝑢 ∧ 𝑠 ∈ 𝑆𝑢′)
This captures the fact that a scope 𝑠 can be extended by a unit other than 𝑢 when 𝑠 is not owned
by 𝑢 or 𝑢 has shared 𝑠 with a subunit 𝑢′. A query is non-local when its resolution invokes Resolve
with a path of which the target is non-local. We need to confirm precisely these queries.

Tomake these queries available for future type-checker invocations, we adapt the query resolution
algorithm to maintain a set 𝑄 of non-local residual queries. These queries are collected by adding
the following line to the query resolution algorithm in Fig. 5:

if non-localself (𝑠𝑡) then 𝑄 += (𝑢, 𝑞)
In addition, the resolution algorithm accumulates the recorded queries of sub-queries, and returns
the resulting set 𝑄 alongside the query answer. When a query is fully resolved (i.e., an invocation
of Resolve by Query returns), 𝑄 is inserted in the set of recorded queries 𝑄𝑛 .

Note that this approach separately collects transitive queries. For example, suppose unit 𝑢1 sends
Query(𝑞1) to 𝑢2 and during resolution of 𝑞1, 𝑢2 sends Query(𝑞2) to 𝑢3. Then both 𝑞1 and 𝑞2 are
collected in𝑄𝑛 , as they are non-local in 𝑢1 and 𝑢2, respectively. This is required to prevent unsound
interaction with other parts of the algorithm, which will be explained in more detail in Section 6.2.

4.2 Using Environment Diffs to Release Units
To confirm a query, we compute whether there are any paths that are added or removed when
the query would have been executed in the new scope graph. Any added path can be split into
two parts 𝑝1 · 𝑙 · 𝑝2 where target(𝑝1) · 𝑙 · source(𝑝2) is an edge that is added in G𝑛 . Similarly, when
a path is removed from an environment, at least one of its edges is removed from the scope graph.
To identify such paths, we emulate the query resolution algorithm, but collect added and removed
edges instead of resolution paths.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:9

async fun Diff(𝑠 , 𝑙) : P(S) ×P(S) ×P(S)
𝑆𝑛 := await getEdges(𝑠, 𝑙,G𝑛)
𝑆𝑛−1 := getEdges(𝑠, 𝑙,G𝑛−1)
return (𝑆𝑛 ∩ 𝑆𝑛−1, 𝑆𝑛 \ 𝑆𝑛−1, 𝑆𝑛−1 \ 𝑆𝑛)

async fun EnvDiff(𝑠 , r) : 𝛿𝐸+ × 𝛿𝐸−

if owner(𝑠) ≠ self then return (∅, ∅)
𝛿𝐸+ := ∅, 𝛿𝐸− := ∅
foreach 𝑙 ∈ L such that 𝜕𝑙 r ≠ ∅ do

(𝑆∼𝑡 , 𝑆+𝑡 , 𝑆−𝑡) := await Diff(𝑠, 𝑙)
𝛿𝐸+ += { (𝑠𝑡 , 𝜕𝑙 r) | 𝑠𝑡 ∈ 𝑆+𝑡 }
𝛿𝐸− += { (𝑠𝑡 , 𝜕𝑙 r) | 𝑠𝑡 ∈ 𝑆−𝑡 }
foreach 𝑠𝑡 ∈ 𝑆∼𝑡 do

(𝛿𝐸+′ , 𝛿𝐸−′) := await EnvDiff(𝑠𝑡 , 𝜕𝑙 r)
𝛿𝐸+ += 𝛿𝐸+

′

𝛿𝐸− += 𝛿𝐸−
′

return (𝛿𝐸+, 𝛿𝐸−)
async fun Confirm(𝑠 , r , D) : (P(Q𝑛−1) ×P(Q𝑛))?

𝑄− := ∅, 𝑄+ := ∅
(𝛿𝐸+, 𝛿𝐸−) := await EnvDiff(𝑠, r)
foreach (𝑠𝑡 , r′) ∈ 𝛿𝐸+ do

(𝑄 ′, 𝐴) := await send Query(𝑠𝑡 r′,D) to owner(𝑠𝑡)
if 𝐴 ≠ ∅ then return ⊥
else 𝑄+ += 𝑄 ′

foreach (𝑠𝑡 , r′) ∈ 𝛿𝐸− do
(𝑄 ′, 𝐴) := await send PQuery(𝑠𝑡 , r′,D) to owner(𝑠𝑡)
if 𝐴 ≠ ∅ then return ⊥
else 𝑄− += 𝑄 ′

return (𝑄−, 𝑄+)
proc Hold(𝑆)

𝑄− := ∅, 𝑄+ := ∅
foreach (𝑢, 𝑞) ∈ 𝑄𝑛−1 do

if (𝑄−′
, 𝑄+′) := await send Confirm(𝑞) to 𝑢 then

𝑄− += 𝑄−′

𝑄+ += 𝑄+′

else
Restart(𝑆)
return

Release(𝑆 , 𝑄𝑛−1 \𝑄− ∪𝑄+)
proc Release(𝑆 , 𝑄)

G𝑛 := G𝑛−1, 𝑄𝑛 := 𝑄 , 𝑇𝑛 := 𝑇𝑛−1
foreach (𝑠, 𝑙) ∈ 𝑆 × L do CloseEdge(𝑠 , 𝑙)

Fig. 8. Confirm query using environment diffs

The EnvDiff function, defined
in Fig. 8, implements this step. It
takes a scope and a path well-
formedness condition as arguments,
and returns an environment diff. An
environment diff consists of two
sets: 𝛿𝐸+ and 𝛿𝐸−, which contain
the added and removed subenviron-
ments, respectively. Both sets con-
tain (𝑠, r) pairs, which indicate that
an edge with target 𝑠 is added or
removed. The argument r is the
path-wellformedness condition that
a residual query from 𝑠 would have
used. An environment diff is com-
puted as follows. For each label that
can be followed by the regular ex-
pression, the scope diff is calculated
by the Diff function. This func-
tion computes the targets of the 𝑙-
labeled edges for the current and pre-
vious scope graph, and divides them
in three subsets. The first subset
contains the matched edge targets,
which are the targets of edges that
occur in both graphs. The other sets
contain the added and removed edge
targets, respectively. For each added
and removed scope, an appropriate
marker is inserted in the correct set.
For all matched edges, EnvDiff re-
cursively computes the environment
diffs. In this way, the EnvDiff re-
turns a collection of scopes that are
targets of added or removed edges
along possible resolution paths.
Now, for each marker pair in 𝛿𝐸+

we know that a prefix 𝑝1 · 𝑙 · 𝑠𝑡 exists,
because it was traversed by EnvDiff.
However, we do not yet know if 𝑠𝑡
actually leads to a valid declaration
for the query (i.e., if a 𝑝2 segment
exists). To validate that, Confirm ex-
ecutes residual queries from 𝑠𝑡 , using
the Query message. When the residual query returns a non-empty result, a valid residual path from
𝑠𝑡 exists, and hence a new valid path in the answer to the original query. Therefore, we return ⊥
to indicate that the query could not be confirmed. Otherwise, we add the non-local queries of the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:10 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

residual query to a set of additional recorded queries 𝑄+. This is necessary to ensure future itera-
tions execute correctly. Although an added edge might not immediately lead to new declarations,
additional edges added in future edits might do so. Thus, we need to confirm the new non-local
queries after new edits. We will illustrate this in Section 4.3.
For removed edges (in 𝛿𝐸−), we apply the reverse reasoning. We query the scope graph of the

previous version of the project using the newly introduced PQuery : Q → A message. If that returns
results, valid paths in the original query answer existed, but are now removed. This invalidates the
query, and therefore ⊥ is returned again. Otherwise, we add 𝑄 ′ to the set 𝑄− of queries that can be
removed. These queries do not need to be confirmed in future iterations anymore, because their
sub-environments became unreachable by the edge removal.

When no added or removed edge leads to a change in the environment, the query is confirmed
and 𝑄− and 𝑄+ are returned. The adapted Hold procedure shows how these sets are handled. First,
they are accumulated for all confirmed queries. Finally, when the unit is released, the previous set
of recorded queries is updated by removing 𝑄− and adding 𝑄+. In this way, the set of recorded
queries is kept in sync with the recorded queries the original type-checker would have created in a
non-incremental run.
This algorithm slightly overapproximates the environment diffs, as it does not take shadowing

in the original query into account. When an added or removed path was shadowed in the original
result, it in fact does not change the query answer. However, to check that, we would need to record
the answer of a query. We expect that recording all answers would require a significant amount
of memory, and that verifying whether diffs are shadowed would be computationally expensive.
Instead, we accept this small overapproximation, which was never observed in practice.

4.3 Confirmation Example
We illustrate this algorithm with the example in Fig. 9. This example shows two consecutive edits
in a Java program. The order of the edits is indicated using the circled superscripts. In the first edit,
an extends A clause is added to class B. Second, the field x in class A is renamed to y. Together,
both edits make the reference to y in class C resolve. In the scope graph on the right (in which the
TYPE edges are omitted for brevity), the changes in the scope graph that correspond to these edits
are shown.

Edit 1. We first show how the incremental analysis behaves after the first edit. At that stage,
unit 𝑢𝐴 is released immediately, because it has no (relevant) non-local queries. Unit 𝑢𝐵 is analyzed,
because it was edited. Since edge 𝑠𝐶 · EXT · 𝑠𝐵 already existed in the initial version, a query 𝑞1 =

⟨𝑠𝐵, EXT∗FLD,Dy⟩ was recorded for 𝑢𝐶 . (Here EXT∗FLD originates from 𝜕EXTLEX∗EXT∗FLD.) 𝑢𝐶
requests confirmation of this query by sending Confirm(𝑞1) to 𝑢𝐵 . Confirming this query in 𝑠𝐵
yields an added edge (𝑠𝐴, EXT∗FLD) ∈ 𝛿𝐸+. However, the residual query in this scope, executed
by 𝑢𝐵 , yields an empty answer because no declaration with name y exists yet. Moreover, it returns
an additional recorded query 𝑞2 = ⟨𝑠𝐴, EXT∗FLD,Dy⟩ because 𝑠𝐴 is non-local to𝑢𝐵 . Since the answer
was empty, 𝑢𝐵 confirms 𝑞1, and 𝑢𝐶 is released with 𝑞2 added to the set of recorded queries 𝑄1.
This outcome corresponds to the intuition that the new extends clause does not bring another
declaration of y in scope, and therefore 𝑢𝐶 does not need to be reanalyzed.

Edit 2. Second, the field x in class A is renamed to y. Intuitively, we would expect that 𝑢𝐶 should
be reanalyzed, because its reference to y can now resolve. Our algorithm ensures that happens as
follows. Confirming 𝑞1 in 𝑠𝐵 gives a single matched edge 𝑠𝐵 · EXT · 𝑠𝐴. But as 𝑠𝐴 is external to 𝑢𝐵 , no
added and removed edges in 𝑢𝐵 are calculated. Thus, 𝑢𝐵 confirms 𝑞1. However, the confirmation
of 𝑞2 by 𝑢𝐴 finds two changed edges: (𝑠𝑥 , 𝜀) ∈ 𝛿𝐸− and (𝑠𝑦, 𝜀) ∈ 𝛿𝐸+. Here 𝜀, which is the regular
expression matching the empty word, arises because 𝜕FLDEXT∗FLD = 𝜀. Executing the residual

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:11

class A {

int x y = 42; 2

}

class B extends A 1 {
}

class C extends B {
int z = y;

}

𝑠𝐴 ↦→ A𝑠𝑥 ↦→ x FLD
2− 𝑠𝑦 ↦→ yFLD

2+

𝑠𝐵 ↦→ B

EXT
1+

𝑠𝐶 ↦→ C

EXT

𝑠𝑧 ↦→ zFLD

𝑞 = ⟨𝑠𝐶 , LEX∗EXT∗FLD,Dy ⟩

𝑢𝐴

𝑢𝐵

𝑢𝐶

Fig. 9. Confirmation example. The left part shows a Java program, in which a field x is renamed to y. At the
right side, the corresponding scope graph is shown, with the parts corresponding to the changes colored and
numbered accordingly. In the program as well as in the scope graph, the color red denotes removals, while
green denotes additions. In the scope graph, additions are also indicated with a plus symbol, and removals
with a minus. Finally, 𝑞 shows the query for y in C, which eventually resolves to A.y.

public class A {
// ...

}

public class B {
// ...

}

𝑠𝑝

𝑠𝐴 ↦→ A

CLS

𝑠𝐵 ↦→ B

CLS

𝑞𝐴 = ⟨𝑠𝑝 ,CLS,DA ⟩

𝑞𝐵 = ⟨𝑠𝑝 ,CLS,DB ⟩

𝑢𝐴

𝑢𝐵

𝑢𝑝

Fig. 10. Mutual dependency example. The queries represent duplicate name checks. The paths with alternating
dashes and dots represent paths traversed by the query resolution algorithm that yielded no results but
nonetheless gave rise to dependencies due to the fact the resolution step resulted in a new recorded query.

query for the removed edge gives no results since x ∉ Dy, but the query in the added edge returns
a path (𝑠𝑦, y). Therefore, ⊥ is returned to 𝑢𝐶 , leading to a restart of the unit. Note that 𝑞2, which
led to the invalidation of this result, was added when confirming the first edit. This demonstrates
the need to update the set of recorded queries for added and removed edges.

5 CONTEXT-FREE SNAPSHOTS
Essential to the viability of an incremental type-checker is its ability to deal with mutual depen-
dencies. In this section, we explain how we deal with mutual dependencies around shared scopes.
The key idea, inspired by Cardelli [1997] and Shao and Appel [1993], is to split the type-checking
task into a part that can be decided locally and a part that depends on the context (i.e., the other
compilation units). In Section 6, we show how to handle other occurrences of cyclic dependencies.

To illustrate the problem with mutual dependencies around shared scopes, we explain how our
algorithm behaves for the example in Fig. 10. In this example, there are two classes (with their
bodies omitted for brevity). Both classes execute a duplicate name check by doing a query for a
class with their own name. When their name is not used by another class, this query should resolve
to a single result. As shown in the graph, this generates residual queries in all classes in 𝑠𝑝 . Thus,
there is a mutual dependency between classes A and B.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:12 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

interface TypeChecker
async fun RunLocal(𝑆) : Y
async fun RunInContext(𝑌) : T

proc Start(𝑆)
𝑌𝑛 := await RunLocalTC(𝑆)
G∗
𝑛 := G𝑛

𝑂∗
𝑛 := 𝑂

stateself := active
𝑇𝑛 := await RunInContextTC(𝑌𝑛)

proc Restart()
𝑇𝑛 := RunInContextTC(𝑌𝑛−1)

proc Hold(𝑆)
G𝑛 := G∗

𝑛−1
foreach (𝑠, 𝑙) ∈ 𝑂 \𝑂∗

𝑛−1 do
CloseEdge(𝑠 , 𝑙)

// confirm queries as earlier

async fun Query(𝑠, r,D)
(𝐴,𝑄) := Resolve(𝑠, r,D)
if 𝑄 ≠ ∅ then

await stateself = active
𝑄𝑛 += 𝑄

return 𝐴

Fig. 11. Algorithm with adaptions to capture and restore context-free snapshots of type-checker.

Now suppose the body of class A is edited. That class will then re-execute its type-checker,
re-creating the class declaration 𝑠𝑝 · CLS · 𝑠𝐴 and issuing 𝑞𝐴. However, the query will get stuck in 𝑠𝑝
because CLS is not closed, as it must still be closed by 𝑢𝐵 . At the same time, 𝑢𝐵 tries to confirm 𝑞𝐵 .
But the confirmation of 𝑞𝐵 is stuck on CLS in 𝑠𝑝 as well. In this situation, our algorithm cannot
make progress anymore because both 𝑢𝐴 and 𝑢𝐵 are waiting for 𝑢𝐵 to close CLS in 𝑠𝑝 .

However, when we look into more detail in this example, it is obvious that this stuckness is not
necessary. The declarations of the classes can be determined from just their source, without external
information. Hence, it is not necessary for unit 𝑢𝐵 to wait for the confirmation of its queries before
declaring itself in 𝑠𝑝 . Regardless of whether its queries are confirmed or not, 𝑠𝑝 · CLS · 𝑠𝐵 will exist.

localStart active

unknownHold

done

released

msgmsg

Re
st
ar
t

Confirm

Release

Fig. 12. Extended unit state diagram

Context-Free Snapshots. Generalizing this observa-
tion, we solve this problem as follows. We split the type-
checking task into two subsequent subtasks: a context-
free part and a context-dependent part. The context-free
part will type-check the program partially, only using
local information. Hence, in this phase, the unit will
not deliver answers to non-local queries to the type-
checker. Instead, these are delayed until the second
subtasks starts. Thus, the result of the first step, dubbed
the context-free snapshot, does not depend on external
information. Hence, it can be reused when other units
are edited, even when that leads to a restart. This behavior is shown in Fig. 12. A changed unit starts
in state local, in which it executes the first part of the type-checking task. When that is finished, it
transitions to the active state, where it executes the context-dependent checks. A restarted unit
reuses the context-free snapshot of the previous iteration, and thus starts in state active directly.
Fig. 11 shows the adaptations to the algorithm that implements this state diagram. First, the

TypeChecker interface is split into two functions. The RunLocal function runs the context-free
part of the algorithm, and returns a snapshot 𝑌 ∈ Y. RunInContext takes such a snapshot, and
returns a type-checker result 𝑇 ∈ T . Start executes these functions in state local and state active,
respectively. Before transitioning to active, the current unit state is captured in G∗

𝑛 (called the
context-free scope graph) and 𝑂∗

𝑛 . When initializing an unchanged unit (in Hold), the context-free
scope graph of the previous iteration is restored, and all edges that were closed in the local phase are
closed again. If such a unit is restarted, RunInContext is used to re-execute the context-dependent
part of the type-checker. Finally, the Query function (which is implemented by the unit, and can be

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:13

invoked by the type-checker), is adapted. If a query was non-local, which can be deduced from its
recorded residual queries, the unit waits until it is in state active before delivering the answer.

For Statix, a constraint-based type-checker, the new interface is implemented as follows. RunLocal
solves constraints until all remaining constraints are blocked. At that point, these constraints and
the current solver state (unifier etc.) are returned as𝑌 . RunInContext then simply continues solving
the constraints that are unblocked by the delivery of the answers to the non-local queries.

6 RESOLVING MUTUAL DEPENDENCIES
Essential to the soundness of the algorithm is handling mutual dependencies correctly. In the
previous section, we showed how mutual dependencies around shared scopes are resolved by
restoring the context-free part of the type-checker result at unit initialization time. In this section, we
present a mechanism that detects and resolves all remaining mutual dependencies. This mechanism
is additionally used to improve efficiency by saving redundant confirmations. Finally, we explain
why only transitive query recording is sound with this resolution protocol.

6.1 Resolving Mutual Dependencies Involving Units in State Unknown
Van Antwerpen and Visser [2021] show that mutual dependencies result in a cluster of deadlocked
units, which can be detected using deadlock detection algorithms. They provide a procedure (which
we call ResolveCyclesRegular) that resolves such mutual dependencies. Because we extended the
framework with new unit states (unknown and released), we need to handle mutual dependencies
involving units in these states correctly. This can be done as follows. If all units involved in the
deadlock are in state unknown or released, we release them all. This is sound because units in state
unknown only wait for Confirm messages. When there is no active unit in the system, the answer
to a query cannot be changed, as only active or done units can have a changed scope graph. Hence,
they can be released, as their previous result of unknown units is still valid. Otherwise, if there is a
unit in state active or done in the cluster, the units that are in state unknown must be restarted.

input:𝑈 set of mutually dependent units
proc ResolveCycles(𝑈)

if ∀𝑢 ∈ 𝑈 . state𝑢 ≠ unknown then ResolveCyclesRegular(𝑈)

else if ∀𝑢 ∈ 𝑈 . state𝑢 = unknown ∨ state𝑢 = released then
foreach 𝑢 ∈ 𝑈 such that state𝑢 = unknown do

send Release() to 𝑢
else foreach 𝑢 ∈ 𝑈 such that state𝑢 = unknown do

send Restart() to 𝑢

Fig. 13. Resolution of cyclic dependencies

Fig. 13 shows how this is im-
plemented. When there is no unit
in the unknown state, the regular
deadlock handling is applied. Oth-
erwise, when all units are either
in state unknown or released, all
unknown units are released using
the new Release message. If, on
the other hand, there is a unit in𝑈
that was reanalyzed, all units in𝑈
must be reanalyzed. Therefore, a
Restart message is sent to them. This is needed, because there is a changed unit in 𝑈 on which all
other units depend, but there is no precise way of determining which units to restart.

on receive Confirm(⟨𝑠, r,D⟩)
await stateself = active
return await Confirm(𝑠, r,D)

Fig. 14. Confirm message handler
waiting until the unit is in state active.

This mechanism can be used to use query confirmation only
when necessary. A query can only be denied when there are
changed edges in the new scope graph. However, the scope
graph of an unknown or released unit can not be changed
(yet). Therefore, we can save computation time by postponing
query confirmation until a unit is activated. When that results
in a cluster of unknown units waiting for each other (which is
likely to happen), dependency resolution will ensure all units are released. This is shown in Fig. 14.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:14 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

class A {
int y = C.a;

}

class B extends A {
int b = C.a;

}

class C extends B {
static int a = 42;
int z = y;

}

𝑠𝐴 ↦→ A 𝑠𝑦 ↦→ yFLD

𝑠𝐵 ↦→ B

EXT

𝑠𝑏 ↦→ bFLD

𝑠𝐶 ↦→ C

EXT

𝑠𝑧 ↦→ zFLD

𝑠𝑎 ↦→ a

S_FLD

𝑞𝑎

𝑞𝑦

𝑞𝑎

𝑞′𝑎

𝑢𝐴

𝑢𝐵

𝑢𝐶

Fig. 15. Example demonstrating unsound confirmation. References are colored similar to the queries they
correspond to. The resolution step with thick dashes between 𝑠𝐵 and 𝑠𝐴 indicates a transitive dependency.

6.2 Unsoundness of Transitive Confirmation
In Section 4.1, we mentioned that we choose recording transitive queries over transitive environment
diffing or transitive query confirmation. We illustrate why that is needed using the example depicted
in Fig. 15. This example shows classes A and B that have a dependency on class C, caused by queries
for C.a. Similarly, C has a transitive dependency on A via B, indicated by the edge with thick dashes.
Our algorithm records and confirms a separate residual query for this edge. However, for the sake
of the example, we now suppose that is not the case, but EnvDiff calculates environment diffs for
external scopes as well.

Change in B. Suppose an irrelevant change in 𝑢𝐵 is made. 𝑢𝐶 will send Confirm(𝑞𝑦) to 𝑢𝐵 . Now,
the (transitive) environment diff computation in 𝑢𝐵 has to wait until unit 𝑢𝐴 is active, before it can
validate the query. However, unit 𝐴 is in state unknown, and will never reply. So, 𝑢𝐵 waits for 𝑢𝐴
and 𝑢𝐶 for 𝑢𝐵 . Similarly, 𝑢𝐴 waits for 𝑢𝐶 for the confirmation of 𝑞𝑎 . This is a mutual dependency
between these three units, which our algorithm will resolve. However, as an active unit is involved,
𝑢𝐴 and 𝑢𝐶 are restarted, which is suboptimal.

Change in A. An even worse situation occurs when a change that invalidates 𝑞𝑦 occurs in 𝐴

(such as renaming y to x). In that case, confirmation of query 𝑞𝑦 is stuck in unit 𝑢𝐵 , as it is inactive.
Thus, no explicit wait for for unit 𝑢𝐴 (for confirming the transitive part of the query) is introduced.
Hence, we arrive in the situation where only 𝑢𝐵 and 𝑢𝐶 are mutually dependent. Since both units
are in state unknown, the mutual dependency resolution will release both units. However, this is
unsound, as the change in 𝑢𝐴 should have invalidated 𝑞𝑦 .

Transitive Recording. On the other hand, explicitly recording and confirming transitive queries
will immediately create dependencies from 𝑢𝐶 to 𝑢𝐴 and 𝑢𝐵 , while 𝑢𝐵 will not need to wait for 𝑢𝐴.
In the first case, 𝑢𝐵 can therefore answer 𝑢𝐶 . Hence, the mutually dependent set only contains
𝑢𝐴 and 𝑢𝐶 , which results in a release of both. In the second case, 𝑢𝐶 immediately sends a Confirm
message to 𝑢𝐴, which 𝑢𝐴 will deny, leading to a correct restart of 𝑢𝐶 . In conclusion, we see that
explicitly recording transitive queries turns transitive dependencies into non-transitive waits, which
work well with the mutual dependency resolution.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:15

7 SCOPE GRAPH DIFFING

input: 𝑆∼ initial matches

var: 𝑆∼ ⊂ 𝑆𝑛 × 𝑆𝑛−1 := 𝑆∼ matched scopes
var: 𝑆− ⊂ 𝑆𝑛−1 := ∅ removed scopes
var: 𝑆+ ⊂ 𝑆𝑛 := ∅ added scopes

var: 𝐸∼ ⊂ 𝐸𝑛 × 𝐸𝑛−1 := ∅ matched edges
var: 𝐸− ⊂ 𝐸𝑛−1 := ∅ removed edges
var: 𝐸+ ⊂ 𝐸𝑛 := ∅ added edges

var: 𝑍 ⊂ 𝐸𝑛 × 𝐸𝑛−1 = ∅ queue of matches

async fun Diff(𝑆∼) : 𝜕G
foreach 𝑠𝑛 ∼ 𝑠𝑛−1 ∈ 𝑆∼ do

ScheduleEdges(𝑠𝑛 , 𝑠𝑛−1)
while (𝑒𝑛, 𝑒𝑛−1) := await dequeue(𝑍) do

TryMatch(𝑒𝑛 , 𝑒𝑛−1)
return Finalize()

proc ScheduleEdges(𝑠𝑛 , 𝑠𝑛−1)
foreach 𝑙 ∈ L do

𝐸𝑛 := await getEdges(𝑠𝑛, 𝑙,G𝑛)
𝐸𝑛−1 := getEdges(𝑠𝑛−1, 𝑙,G𝑛−1)
foreach (𝑠′𝑛, 𝑠′𝑛−1) ∈ 𝐸𝑛 × 𝐸𝑛−1 do

if CanMatch(𝑠′𝑛 , 𝑠′𝑛−1) then
𝑒𝑛 := 𝑠𝑛 · 𝑙 · 𝑠′𝑛 , 𝑒𝑛−1 := 𝑠𝑛−1 · 𝑙 · 𝑠′𝑛−1
𝑍 += (𝑒𝑛, 𝑒𝑛−1)

fun CanMatch(𝑠𝑛 , 𝑠𝑛−1)
o := owner(𝑠𝑛−1) = owner(𝑠𝑛)
d := 𝜌𝑛−1 (𝑠𝑛−1) = 𝜌𝑛 (𝑠𝑛)
return o ∧ d

proc TryMatch(𝑒𝑛 , 𝑒𝑛−1)
𝑠′𝑛 := target(𝑒𝑛), 𝑠′𝑛−1 := target(𝑒𝑛−1)
if Consistent(𝑠′𝑛, 𝑠′𝑛−1) then

𝐸∼ += 𝑒𝑛 ∼ 𝑒𝑛−1, 𝑆∼ += 𝑠′𝑛 ∼ 𝑠′
𝑛−1

ScheduleEdges(𝑠′𝑛 , 𝑠
′
𝑛−1)

if 𝑒𝑛 ∉ 𝐸∼ ∧ 𝑒𝑛 ∉ dom(𝑍) then 𝐸+ += 𝑒𝑛

if 𝑒𝑛−1 ∉ 𝐸∼ ∧ 𝑒𝑛−1 ∉ ran(𝑍) then 𝐸− += 𝑒𝑛−1
fun Consistent(𝑠𝑛, 𝑠𝑛−1) : Bool

free := 𝑠𝑛 ∉ dom(𝑆∼) ∧ 𝑠𝑛−1 ∉ ran(𝑆∼)
return 𝑠𝑛 ∼ 𝑠𝑛−1 ∈ 𝑆∼ ∨ free

fun Finalize() : 𝜕G
𝑆+ := 𝑆𝑛 \ dom(𝑆∼), 𝑆− := 𝑆𝑛−1 \ ran(𝑆∼)
return (𝑆∼, 𝑆+, 𝑆−, 𝐸∼, 𝐸+, 𝐸−)

Fig. 16. Scope graph diffing algorithm

Until now, we have assumed that scopes that
have the same semantic meaning also have the
same identity in both the current and the pre-
vious scope graph. For example, we used 𝑠𝐴
to refer to a scope that models a class A, in
both G𝑛 and G𝑛−1. However, the scope gener-
ation function FreshScope in fact creates non-
deterministic identities. For example, the scope
modeling a class might have identity 𝑠0 in G𝑛−1,
but 𝑠1 in G𝑛 . This section discusses two prob-
lems this poses for our incremental algorithm.
First, we need to decide which scopes and edges
in both scope graphs have have the same se-
mantic meaning. We solve this problem using
a graph diffing algorithm. Second, we need to
update references to these scopes in the type-
checker outputs. This is done by collecting pairs
of matching scopes during environment diffing,
and applying these as a substitution to the out-
puts of the type-checker.

7.1 Scope Graph Diffing Algorithm
Finding which scopes have the same seman-
tic meaning in two different scope graphs es-
sentially means solving a graph isomorphism
problem. Because there are no known polyno-
mial algorithms for graph isomorphism [Grohe
and Schweitzer 2020], we aimed at a greedy
approximation algorithm that works well on
scope graphs in practise. This algorithm can
compute partial diffs in incomplete scope graphs.
We used the following constraints on scope
graph diffs to guide the algorithm: First, we
use shared scopes as initial matches. Second,
matched scopes must always have the same
owner and data. These constraints reduce the
number of candidate matches for a scope signif-
icantly. For most name binding patterns, this re-
sults in single candidates, making the match triv-
ial to decide. Finally, when an incorrect match is
chosen, the incremental algorithm is less precise,
but not unsound.

The input and the local state of the diffing algorithm are shown in Fig. 16. The input consists of a
non-empty set of initial matches. The algorithm maintains monotonically increasing sets of scopes
and edges that are matched, added or removed. Finally, there is a queue 𝑍 that contains entries for
all edges that can possibly be matched, which is the case when their targets can be matched.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:16 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

The diffing algorithm starts in Diff, shown in Fig. 16, with matching the outgoing edges of
the shared scopes. Matching edges is performed using the following steps. First, the algorithm
waits until all outgoing edges for the current graph are available. Second, pairs of current and
previous edges that have potentially matching targets are enqueued in 𝑍 . Third, when an edge pair
is dequeued, and the match is consistent, it is applied to the current state. Finally, for all newly
matched scopes, this procedure is repeated.

The ScheduleEdges procedure implements the first two steps. For a pair of matched scopes, all
outgoing current edges are collected. When these are known, all potential matches are inserted
in 𝑍 . Note that these steps are asynchronous, as they need to wait for the edges. Because no global
variables are updated (except inserting in 𝑍), this will not cause data races or similar problems.

After Diff scheduled the initial edge matches, it will peek the queue of pending matches. This
operation is asynchronous, because the queue can be empty while there are still pending calls
to getEdges. In such cases, dequeue will wait until either all these returned, or a new match is
enqueued. When there is a candidate match dequeued from 𝑍 , the Consistent function checks if
it is consistent with the differ state. Consistency means that the target scopes are either already
matched to each other, or both not matched at all. When that is the case, the edge match and
all requirements are inserted in the differ state. When either the current or the previous edge is
not matched and not scheduled anymore, it is marked as added or removed, respectively. When
the queue is empty and there are no pending asynchronous method calls, the scope graph diff is
finalized by marking the remaining scopes and edges as added or removed, as appropriate.

7.2 Patch Collection and Application

async fun EnvDiff(𝑠𝑛−1, r , 𝜕G) : Π × 𝛿𝐸+ × 𝛿𝐸−

if owner(𝑠) ≠ self then return (∅, ∅, ∅)
(𝑠𝑛, 𝐸∼, 𝐸+, 𝐸−) := await diff(𝜕G, 𝑠𝑛−1)
𝛿𝐸+ := ∅, 𝛿𝐸− := ∅, Π := { 𝑠𝑛 ∼ 𝑠𝑛−1 }
foreach 𝑠𝑛 · 𝑙 · 𝑠′𝑛 ∼ 𝑠𝑛−1 · 𝑙 · 𝑠′𝑛−1 ∈ 𝐸∼ such that 𝜕𝑙 r ≠ ∅ do

(Π′, 𝛿𝐸+
′
, 𝛿𝐸−

′) := await EnvDiff(𝑠′
𝑛−1, 𝜕𝑙 r, 𝜕G)

Π += Π′, 𝛿𝐸+ += 𝛿𝐸+
′
, 𝛿𝐸− += 𝛿𝐸−

′

𝛿𝐸+ += { (𝑠′𝑛, 𝜕𝑙 r) | 𝑠𝑛 · 𝑙 · 𝑠′𝑛 ∈ 𝐸+ }
𝛿𝐸− += { (𝑠′

𝑛−1, 𝜕𝑙 r) | 𝑠𝑛−1 · 𝑙 · 𝑠
′
𝑛−1 ∈ 𝐸− }

return (Π, 𝛿𝐸+, 𝛿𝐸−)
async fun Confirm(𝑠𝑛−1, r , D, 𝜕G) : (P(Q𝑛−1) ×P(Q𝑛) × Π)?

𝑄− := ∅, 𝑄+ := ∅
(Π, 𝛿𝐸+, 𝛿𝐸−) := await EnvDiff(𝑠𝑛−1, ∅, r, 𝜕G)
// Compute Residual Queries as earlier

return (𝑄−, 𝑄+,Π)
proc Release(Π)

G𝑛 := Π(G𝑛−1), 𝑄𝑛 := Π(𝑄𝑛−1)
G∗
𝑛 := Π(G∗

𝑛−1), 𝑌𝑛 := Π(𝑌𝑛−1)
foreach (𝑠, 𝑙) ∈ 𝑂 do CloseEdge(𝑠 , 𝑙)
𝑇𝑛 := Π(𝑇𝑛−1)

Fig. 17. Query confirmation algorithm with scope patching

The fact that scope identities
change when a unit is rean-
alyzed also implies that ref-
erences to scopes in a previ-
ous result might become stale.
Therefore, we need to substi-
tute these references with the
scope they are matched to. To
perform this task, we collect all
matched scopes during query
confirmation, and apply those
as a substitution to the type-
checker result.
Fig. 17 shows the adapted

confirmation algorithm that
also tracks scope patches. In
EnvDiff, two changes aremade.
First, the call to Diff(𝑠 , 𝑙)
is replaced by an invocation
of diff(𝜕G, 𝑠𝑛−1). This function
probes a (possibly incomplete)
scope graph diff 𝜕G for a scope
diff of 𝑠𝑛−1. This returns the
scope 𝑠𝑛 that is matched to 𝑠𝑛−1, as well as the matched, added and removed outgoing edges.
The scope diff is returned when all outgoing edges of 𝑠𝑛−1 and 𝑠𝑛 are processed. Second, a set of
scope patches Π is introduced. In this set, all matches of scopes traversed during confirmation are

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:17

collected, alongside the environment diff. Eventually, Confirm simply returns Π to the sender of
the confirmation message. The receiving unit accumulates all patches it receives (not shown in the
figure) and passes them to Release when appropriate. This function applies the patches (written
as Π(·)) to the previous scope graph, recorded queries, context-free scope graph and snapshot.
To prove the correctness of this approach, recall that type-checkers can only obtain references

to non-local scopes via paths in query answers. Therefore, collecting patches for all scopes in
an answer to a previous query is sufficient to covering all scopes in G𝑛−1 and 𝑇𝑛−1. As the query
confirmation algorithm overapproximates the paths of a query, our algorithm overapproximates
the set of required patches, and is thereby correct. Additionally, removed scopes (for which hence
no path exists) are not a problem. If there is a reference to a removed scope in the type-checker
result, there must be a path in a previous query answer that contained that scope. However, when
that scope was removed, the edge leading to that scope was necessarily removed as well. That
implies that a path from the original query answer was removed, which led to a restart of the unit.
As patching is only applied to released units, the missing patch was irrelevant.

Scope graph diffing and result patching are only required for type-checkers that generate non-
deterministic scope identities. Type-checkers for which scope identities are deterministic can just
use the algorithm as presented in Fig. 8.

8 EVALUATION
To evaluate our approach, we used two Statix specifications: one for Java and one forWebDSL [Groe-
newegen et al. 2008], which is a domain-specific language for dynamic web applications. We chose
Java because it is a language with many different features of which some are challenging to incre-
mentalize (e.g. method overloading, transitive resolution in inheritance trees). Similarly, WebDSL
has many implicit definitions, implicit imports and implicit mutual dependencies. This makes it a
language that is non-trivial to incrementalize and hence a good evaluation subject.

We first determined the accuracy of the scope graph diffing algorithm (Section 8.1). In addition,
we implemented synthetic benchmarks (Section 8.2), but executed the type-checker on the version
history of some real-world projects (Section 8.3) as well. We executed all benchmarks with the
JMH benchmark tool [OpenJDK 2021], using 5 warm-up iterations and 20 measurement iterations,
and 6GB of memory. The benchmarks were executed on a Linux system with 2 AMD EPYC 7502
32-Core Processors (1.5GHz, 2 threads) and 256GB RAM. The measured time is for type-checking
only, and does not include parsing and desugaring, which we regard as out of scope for this work.

8.1 Accuracy of Scope Graph Diffing
The first aspect we evaluated is the accuracy of the scope graph diffing algorithm. We computed
scope graph diffs of 406 Java and 80 WebDSL files. We found that the algorithm gives minimal diffs
for almost all scope graphs. Only when method overloads were supported, results were not accurate.
This was caused by the fact that overloads are distinguished by their type, but the declaration scopes
only have the identifiers as datum. Therefore, the diffing algorithm cannot distinguish between the
scopes of different overloads of a method, and chooses a match arbitrarily. Incorrect declaration
scope matches ensures their type nodes could not be matched, leading to unnecessarily invalidated
queries. We solved this by including the syntactic type (i.e., the AST node that represents the type
of a method) in the datum of the declaration scope. This guides the differ to select the correct
declaration scope. When a specification includes syntactic types in its declarations, the diffing
algorithm always computes minimal scope graph diffs.

We illustrate this using the example in Fig. 18. In this program, there are two overloadedmethods m.
Both declaration scopes 𝑠𝑚1 and 𝑠𝑚2 have m as their datum. Now suppose that two versions of this
scope graph are diffed. In that case, there are two instances of each scope: 𝑠𝑚1 and 𝑠𝑚2 in G𝑛−1,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:18 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

class M {
int m(A a) { /* */ }
int m(B b) { /* */ }

}

𝑠𝑀

𝑠𝑚1 ↦→ m, A 𝑠𝑇 (𝑚1) ↦→ CLS(𝑠𝐴) → int

MTHD

TYPE

𝑠𝑚2 ↦→ m, B 𝑠𝑇 (𝑚2) ↦→ CLS(𝑠𝐵) → int

MTHD

TYPE

Fig. 18. Non-deterministic matching of overloaded methods. The additional information is shown in green.

and 𝑠′𝑚1 and 𝑠
′
𝑚2 in G𝑛 . Now, the scope graph differ might match 𝑠𝑚1 to 𝑠′𝑚2 , as their data are equal.

Therefore, we add the syntactic representation of the arguments (shown in green) to the datum
of the scopes. This allows the differ to distinguish between the different declarations of m, and
correctly match 𝑠𝑚1 to 𝑠′𝑚1 and 𝑠𝑚2 to 𝑠′𝑚2 .

8.2 Synthetic Benchmarks
To evaluate the performance of our approach, we created the following six synthetic benchmarks in
Java. These benchmarks cover typical Java project development scenarios, and additionally exercise
different execution paths through our restart strategy.
(1) In the const-change-no-refs benchmark, the value of a static, unreferenced constant is changed.
(2) The const-change-10-refs benchmark is similar, but now 10 other classes reference the constant.
(3) The third benchmark (superfield-change) contains an inheritance chain of ten classes, starting

in class C0, with class C9 at the bottom of the hierarchy. C0 contains a field, of which the
name is changed. C9 references this field, which gives rise to a query through all these classes.

(4) The new-overload benchmark is similar to the previous one, but instead of a field name being
changed, a new method overload is added, which results in a restart for class C9.

(5) The change-extends benchmark is similar to benchmark (3), but differs in three ways: class C9
does not extend C8, C8 references a field in C0, and the change in the program is that C1
changes its parent class to C9. This change results in a unresolved reference in C8.

(6) Finally, the precedence-takeover benchmark is similar to benchmark (3) as well, but C1 does
not inherit from C0, and C9 has a field with type C0. Here a static inner class with name C0 is
added to C1. Now, the occurrence of C0 in C9 references this new class.

In order to benchmark behavior in different contexts, we executed these benchmarks with differ-
ent ‘payloads’: additional unchanged classes that do not reference other classes. These payload
classes each contain 10 fields, and 20 methods with 4-6 arguments, containing 4-6 method invoca-
tions. Each class resides in its own package to mitigate dependencies for duplicate name checking.
We used small, medium and large payload sets, containing 5, 20 and 100 classes, respectively.
These classes were added to the benchmarked project to measure the runtime characteristics of the
algorithm for different project sizes.
The benchmark results are shown in Fig. 19. These graphs show that benchmarks without

payload do not attain any speedup, but the bigger the payload is, the better the speedup factor
becomes, up to a maximum of 147. This is expected, because for bigger payloads, more results
can be reused. Next, speedups generally decrease when the number of cores is increased. This
behavior has two causes. First, reused units have little work to do, so the active unit dominates
the runtime. In addition, the type-checker of an active unit requires some progress before it can
invalidate queries of other units. During that time, units that eventually are restarted are still idle,
not utilizing the available cores. On the other hand, initial runs still benefit from a larger number
of cores.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:19

Fig. 19. Speedups of synthetic benchmarks. Speedups are decrement factors in runtime relative to non-
incremental analysis at the same level of parallelism. Error bars indicate 99.9% confidence intervals.

8.3 Version Control History Benchmarks
We additionally applied the framework on three commits from each of the Apache Commons
CVS, IO and Lang3 projects (Java) and the Reposearch3 and YellowGrass4 WebDSL applications.
The number of data points is limited because benchmarking a single commit at multiple levels of
parallelism already consumes significant time. The chosen commits varied in size and number of
edited units and should therefore be representative for typical project evolution. Details about the
commits we benchmarked can be found in Appendix B.
Table 1 gives an impression of the absolute runtimes of the single-core benchmarks5. The

table shows that non-incremental analysis can take up to a few minutes for large projects, while
incremental analysis generally takes a few seconds. Second, there is quite some variance in the
incremental analysis time for different commits. In particular, the second commits of Commons-IO
and YellowGrass draw attention. The relatively large runtime values for these benchmark iterations
are explained by the fact that the diffs of these commits are relatively large (two and seven
changed files, respectively). As our approach incrementalizes with compilation unit granularity,
such commits still require significant time to reanalyze. Future research in using our approach with
smaller compilation units (e.g. methods) or integrating query confirmation more directly with the
underlying type-checker may improve incremental runtimes for such commits.

The speedup factors for all benchmarks are shown in Fig. 20 and Fig. 21, respectively. Similar to
the synthetic benchmarks, larger projects obtain better speedups, with a maximum of 21x in the

3https://github.com/webdsl/reposearch
4https://github.com/webdsl/yellowgrass
5The values in the table should be interpreted with care, as the clock speed of the benchmarking machine (1.5GHz) is lower
than that of modern developer machines (2.5 - 3 GHz).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

https://github.com/webdsl/reposearch
https://github.com/webdsl/yellowgrass

140:20 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

Table 1. Absolute runtimes of single-core benchmarks. Values are given in seconds. NI columns give non-
incremental (baseline) values, and I columns give incremental runtimes.

Project Commons-CSV Commons-IO Commons-Lang YellowGrass Reposearch

Mode NI I NI I NI I NI I NI I

1 8.1 5.4 52 4.7 124 6.7 35 2.2 28 8.5
Commit 2 8.3 5.2 50 13.4 129 6.0 39 15.4 28 3.8

3 7.6 4.8 59 5.1 128 8.9 36 2.8 28 6.0

Fig. 20. Speedup factors of Apache Commons benchmarks

Fig. 21. Speedup factors of Reposearch and Yellowgrass WebDSL benchmarks

Commons-Lang project, while small projects, such as Commons-CSV, barely have any speedup at
all. On average, Java projects obtain more speedup than the WebDSL projects. This is likely caused
by the fact that modeling the WebDSL module system required more complicated queries than
Java, and the WebDSL projects are smaller than the Commons-IO and Commons-Lang projects. In
addition, we found that the query recording accounted for an overhead of at most 10%. This shows
that initial overhead is relatively low, and not a limiting factor of our approach.
There are interesting differences between the synthetic and the version-control-based bench-

marks as well. The speedup factors of the synthetic benchmarks are relatively higher, which

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:21

suggests our algorithm behaves best on larger projects with many small compilation units. On the
other hand, the VCS-based benchmarks retain their speedup when the number of cores increases.
This indicates that the incremental runtime is closely correlated to the runtime of the reanalyzed
units, and does not incur much overhead from message ordering.

As mentioned at the beginning of this section, we used a Statix solver as a subject type-checker
in our benchmarks. This solver interprets declarative type system specifications as constraint
programs. Until now, this type-checking strategy has never attained performance comparable to
industrial, language-specific compilers. However, our work has reduced analysis time on large
projects from minutes to seconds, bringing interactive editor response times into reach. In future
work, we want to explore whether other optimization techniques can improve performance even
more, making this approach competitive with respect to performance.

9 RELATEDWORK
In this section, we discuss related work on principles of incremental/separate compilation, ap-
proaches to incremental type-checking, and incremental analysis and build systems.

9.1 Principles of Incremental Analysis
Incremental type-checking is closely related to separate compilation. In his work on module systems
for separate compilation, Cardelli [1997] formalizes a module system that supports true separate
compilation and (non-incremental) safe linking. In his approach, imports and exports, including
their types, are declared explicitly. Intra-module type-checking then does not require external
lookup, but instead refers to the import declarations. Additionally, recursive dependencies are
precluded. Drossopoulou et al. [1999] provide a model for linking and updating fragments of linked
programs that is more tailored to real-world languages, such as Java. In later work, more calculi
for separate type-checking and compilation have been developed [Ancona 1998; Machkasova and
Turbak 2000]. Our approach supports both implicit and explicit imports/exports as well as mutual
dependencies. Moreover, we preserve soundness and completeness of the underlying specification.
Shao and Appel [1993] propose an algorithm for languages with a Damas-Milner-style type

system that infers a minimum set of imports that are required to type-check a module. Whether the
required imports are present is validated at link-time. In this approach, a module only needs to be
recompiled when it is changed. This yields a simpler restarting policy than our framework. However,
delaying inter-module type-checking to link-time might not be desirable in many situations, such
as using type information in editor services. Our algorithm is a generalization over this, where our
‘context-free phase’ corresponds to inferring the minimum number of imports (non-local queries),
and the ‘context-sensitive’ part to their linking phase.

In theML-family of languages, separate compilation and incremental type-checking have received
significant attention. Among one of the earliest approaches to separate compilation for ML is the
work of Leroy [1994]. Just as the formal calculi of the previous section, this work enforces the use
of explicit module types. This allows to separate inter-module type-checking from intra-module
checking at link-time. This line of work has since then resulted in several approaches for separate
compilation in ML [Elsman 2008; Swasey et al. 2006].

9.2 Incremental Type-Checkers
Among the earliest attempts to create an incremental type-checker was the B language [Meertens
1983]. Its type system features lexical scoping with top-level function declarations for which poly-
morphic types are inferred. B programs were type-checked incrementally by upward propagation
of type requirement updates. This approach was feasible because there was no type-dependent
name resolution.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:22 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

The standard Java compiler (javac) supports some form of incremental compilation. When
a particular dependency is available in binary format (.class), its corresponding source is not
required to be available. It has been argued that this does not implement true separate compilation,
as the tasks of compilation and linking are intertwined [Ancona et al. 2002]. For a subset of Java,
true separate compilation has been formalized [Ancona et al. 2002; Ancona and Zucca 2002]. More
recent work focusses on incremental type-checking for Java in general [Kuci et al. 2015], or tailored
to overload resolution [Szabó et al. 2018]. Eclipse Java Development Tools (JDT) also claims to be
incremental [Eclipse 2021], but little information about the implementation could be found.

9.3 Language-Parametric Incremental Type-Checking
Generic approaches for incremental type-checking have been devised as well. Demers et al. [1981]
define two approaches for incremental evaluation of attributes in attribute grammars. An overview
of follow-up work can be found in the survey of Ramalingam and Reps [1993, sect. 3.1.1, 4.3 and 5].

Wachsmuth et al. [2013] define an approach in which a program is type-checked in two phases.
In the first phase, a collection of atomic, inter-dependent tasks is collected, which are executed
in order in the second phase. When a file is changed, its corresponding tasks are recollected and
re-executed when appropriate. This results in speedups of 10x on average. Their approach is tied to
a predecessor of Statix, which uses a more limited graph-based name binding model, supporting
only lexical scoping and imports.

Co-contextual typing rules are a promising approach to deriving incremental type-checkers [Erd-
weg et al. 2015]. In this approach, context requirements are propagated upward, instead of the
traditional approach, where contexts are propagated downward. When a program is changed,
context requirements from siblings can trivially be reused. An intelligent constraint solving scheme
saves even more work. This approach gives finer-grained incrementality than our approach does,
but is more limited in the type system features and name-binding patterns it supports. For example,
overload resolution seems hard to incrementalize this way, due to its non-local nature [Szabó et al.
2018]. Performance-wise, their speedups in incremental runs (up to 24x) slightly exceed our results,
but non-incremental runs impose slowdowns (up to 3x) as well.

Busi et al. [2019] define a procedure that derives an incremental type-checking algorithm from a
non-incremental one. This procedure introduces a cache of the previous environment into the rules,
which is used when the type of a term does not change under an augmented environment. Defining
the transformation on typing rules has the advantage that formal analysis on the incremental type
system can be performed. This ‘grey-box’ approach requires some domain knowledge about the
type system to instantiate. Instead, our framework only requires that a specification follows a split
declaration-type style with syntactic types disambiguating overloads.
Recent work derives incremental type-checkers from algorithmic typing rules expressed in

Datalog [Pacak et al. 2020]. Three transformations optimize the propagation of contexts, yielding
efficient incremental updates. In fact, we view the approaches as complementary for the following
reasons. Pacak et al. focus on intra-unit incrementality (at the constraint level), while our work
is aimed at incrementalizing analysis with respect to external compilation units. In future work,
we aim to complement the work in this paper with incremental constraint solving within a unit.
However, this is challenging because Statix has a top-down evaluation model and scope graphs
are a global structure. On the other hand, Statix is a suitable platform for language-parametric
services, such as semantic code completion [Pelsmaeker et al. 2022] and renaming [Misteli 2021],
which makes it attractive as a type-checking framework. Finally, the evaluation of Pacak et al.
on 200 nested lambdas in PCF shows speedups up to 2500x, but incurs 20x slowdown on initial
runs. However, their approach has not yet been evaluated on real-world languages, which makes it
difficult to compare absolute performances of the approaches.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:23

9.4 Incrementality in Other Domains
Incremental analysis has recently got significant attention in the domain of static (data-flow)
analysis [Arzt and Bodden 2014; Szabó et al. 2021, 2016]. This work usually builds on incremental
Datalog solvers [Ryzhyk and Budiu 2019; Szabó et al. 2016]. Comparing these approaches rigorously
would involve comparing properties of the analysis they perform (such as locality), which we
identify as potential future research.

Another analogous research field is Incremental Build Systems [Greene 2015; Hammer et al. 2014;
Konat et al. 2018; Sánchez et al. 2020]. Build Systems are analogous in the fact that they usually
have tasks as the granularity level, which is analogous to our compilation units. Tasks are treated
as black boxes, and (dynamic) dependencies are derived from task inputs and outputs. On the
other hand, build systems usually rely on a topological ordering on tasks, precluding recursive
dependencies. Because our system has fine-grained dependencies, changes only cascade when
necessary. This is similar to early cut-off in build systems [Konat et al. 2018].

10 CONCLUSION
In this paper, we describe how scope graph queries represent fine-grained dependencies between
compilation units. We present a technique which uses this insight to execute scope-graph-based
type-checkers incrementally. This algorithm is implemented in a framework that automatically
incrementalizes type-checkers derived from a Statix specification. The framework observes all
cross-unit queries a type-checker performs, and confirms those on incremental executions by
computing environment diffs. When an added/removed edge affects a query answer, its originating
unit is reanalyzed. Most mutual dependencies are resolved by splitting the type-checking process
into a local and a context-dependent phase. Other cyclic dependencies lead to restarts only when
an active unit is involved. Benchmarks show our approach yields speedups up to 147x on synthetic
projects, and speedups up to 21x on real codebases. Hence, this framework shows that scope graphs
allow automatic derivation of sound and almost optimal incremental type-checkers.

Future Work. In this paper, we assume that our subject type-checker was derived from a Statix
specification. However, our algorithm in fact makes only a few assumptions on the type-checker it
incrementalizes. Therefore, an interesting question for future research is whether our algorithm can
be applied to scope-graph-based type-checkers that do not use Statix. Another interesting future
research direction is investigating whether query confirmation can be integrated more tightly with
the underlying type-checker, to improve the granularity of the incrementality, while retaining
implicitness and performance. In addition, integrating this framework with an incremental build
system would contribute to building fully incremental compiler pipelines.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback on earlier versions of this paper. We also
want to thank Casper Bach Poulsen for his assistance during the publication process, and Max de
Krieger for providing us with a Statix specification for WebDSL.

REFERENCES
Gul A. Agha. 1990. ACTORS - a model of concurrent computation in distributed systems. MIT Press.
Davide Ancona. 1998. An Algebraic Framework for Separate Type-Checking. In Recent Trends in Algebraic Development

Techniques, 13th International Workshop, WADT 98, Lisbon, Portugal, April 2-4, 1998, Selected Papers (Lecture Notes in
Computer Science, Vol. 1589), José Luiz Fiadeiro (Ed.). Springer, 1–15. https://doi.org/10.1007/3-540-48483-3_1

Davide Ancona, Giovanni Lagorio, and Elena Zucca. 2002. True separate compilation of Java classes. In Proceedings of
the 4th international ACM SIGPLAN conference on Principles and practice of declarative programming, October 6-8, 2002,
Pittsburgh, PA, USA (Affiliated with PLI 2002). ACM, 189–200. https://doi.org/10.1145/571157.571177

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

https://doi.org/10.1007/3-540-48483-3_1
https://doi.org/10.1145/571157.571177

140:24 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

Davide Ancona and Elena Zucca. 2002. A calculus of module systems. Journal of Functional Programming 12, 2 (2002),
91–132. https://doi.org/10.1017/S0956796801004257

Steven Arzt and Eric Bodden. 2014. Reviser: efficiently updating IDE-/IFDS-based data-flow analyses in response to
incremental program changes. In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad, India
- May 31 - June 07, 2014, Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 288–298. https:
//doi.org/10.1145/2568225.2568243

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4 (1964), 481–494.
Matteo Busi, Pierpaolo Degano, and Letterio Galletta. 2019. Using Standard Typing Algorithms Incrementally. In NASA

Formal Methods - 11th International Symposium, NFM 2019, Houston, TX, USA, May 7-9, 2019, Proceedings (Lecture
Notes in Computer Science, Vol. 11460), Julia M. Badger and Kristin Yvonne Rozier (Eds.). Springer, 106–122. https:
//doi.org/10.1007/978-3-030-20652-9_7

Luca Cardelli. 1997. Program Fragments, Linking, and Modularization. In Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. 266–277. https://doi.org/10.1145/263699.263735

Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. 2017. Fast and precise type checking
for JavaScript. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017). https://doi.org/10.1145/3133872

Alan J. Demers, Thomas W. Reps, and Tim Teitelbaum. 1981. Incremental Evaluation for Attribute Grammars with
Application to Syntax-Directed Editors. In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 105–116. https://doi.org/10.1145/567532.567544

Sophia Drossopoulou, Susan Eisenbach, and David Wragg. 1999. A Fragment Calculus – Towards a Model of Separate
Compilation, Linking and Binary Compatibility. In Proceedings, 14th Annual IEEE Symposium on Logic in Computer
Science, 2-5 July, 1999, Trento, Italy. IEEE Computer Society, 147–156. https://doi.org/10.1109/LICS.1999.782606

Eclipse. 2021. JDT Core Component. Retrieved 2021-09-17 from https://www.eclipse.org/jdt/core/
Martin Elsman. 2008. A Framework for Cut-Off Incremental Recompilation and Inter-Module Optimization. Technical Report.

IT University of Copenhagen, Copenhagen. 11 pages. https://elsman.com/pdf/sepcomp_tr.pdf
Sebastian Erdweg, Oliver Bracevac, Edlira Kuci, Matthias Krebs, and Mira Mezini. 2015. A co-contextual formulation of type

rules and its application to incremental type checking. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, Jonathan Aldrich and Patrick Eugster (Eds.).
ACM, 880–897. https://doi.org/10.1145/2814270.2814277

Sterling Greene. 2015. Introducing Incremental Build Support. Retrieved 2021-10-15 from https://blog.gradle.org/introducing-
incremental-build-support

Danny M. Groenewegen, Zef Hemel, Lennart C. L. Kats, and Eelco Visser. 2008. WebDSL: a domain-specific language for
dynamic web applications. In Companion to the 23rd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2008, October 19-13, 2007, Nashville, TN, USA, Gail E. Harris (Ed.). ACM,
779–780. https://doi.org/10.1145/1449814.1449858

Martin Grohe and Pascal Schweitzer. 2020. The graph isomorphism problem. Commun. ACM 63, 11 (10 2020), 128–134.
https://doi.org/10.1145/3372123

Matthew A. Hammer, Yit Phang Khoo, Michael Hicks, and Jeffrey S. Foster. 2014. Adapton: composable, demand-driven
incremental computation. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, Edinburgh, United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 18. https:
//doi.org/10.1145/2594291.2594324

Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax language workbench: rules for declarative specification of languages
and IDEs. In Proceedings of the 25th Annual ACM SIGPLANConference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2010, William R. Cook, Siobhán Clarke, and Martin C. Rinard (Eds.). ACM, Reno/Tahoe, Nevada,
444–463. https://doi.org/10.1145/1869459.1869497

Gabriël Konat, Sebastian Erdweg, and Eelco Visser. 2018. Scalable incremental building with dynamic task dependencies.
In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, Marianne Huchard,
Christian Kästner, and Gordon Fraser (Eds.). ACM, 76–86. https://doi.org/10.1145/3238147.3238196

Edlira Kuci, Sebastian Erdweg, and Mira Mezini. 2015. Toward incremental type checking for Java. In Companion Proceedings
of the 2015 ACM SIGPLAN International Conference on Systems, Programming, Languages and Applications: Software for
Humanity, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 46–47. https://doi.org/10.1145/2814189.2817272

Xavier Leroy. 1994. Manifest Types, Modules, and Separate Compilation. In Proceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. 109–122. https://doi.org/10.1145/174675.176926

Elena Machkasova and Franklyn A. Turbak. 2000. A Calculus for Link-Time Compilation. In Programming Languages and
Systems, 9th European Symposium on Programming, ESOP 2000, Held as Part of the European Joint Conferences on the
Theory and Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April 2, 2000, Proceedings (Lecture Notes in
Computer Science, Vol. 1782), Gert Smolka (Ed.). Springer, 260–274. https://doi.org/10.1007/3-540-46425-5_17

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

https://doi.org/10.1017/S0956796801004257
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1007/978-3-030-20652-9_7
https://doi.org/10.1007/978-3-030-20652-9_7
https://doi.org/10.1145/263699.263735
https://doi.org/10.1145/3133872
https://doi.org/10.1145/567532.567544
https://doi.org/10.1109/LICS.1999.782606
https://www.eclipse.org/jdt/core/
https://elsman.com/pdf/sepcomp_tr.pdf
https://doi.org/10.1145/2814270.2814277
https://blog.gradle.org/introducing-incremental-build-support
https://blog.gradle.org/introducing-incremental-build-support
https://doi.org/10.1145/1449814.1449858
https://doi.org/10.1145/3372123
https://doi.org/10.1145/2594291.2594324
https://doi.org/10.1145/2594291.2594324
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/3238147.3238196
https://doi.org/10.1145/2814189.2817272
https://doi.org/10.1145/174675.176926
https://doi.org/10.1007/3-540-46425-5_17

Incremental Type-Checking for Free 140:25

Lambert G. L. T. Meertens. 1983. Incremental Polymorphic Type Checking in B. In Proceedings of the 10th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages. 265–275. https://doi.org/10.1145/567067.567092

Phil Misteli. 2021. Renaming for Everyone: Language-parametric Renaming in Spoofax. Master’s thesis. Delft University of
Technology. http://resolver.tudelft.nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5 Available at http://resolver.tudelft.
nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5..

Pierre Néron, Andrew P. Tolmach, Eelco Visser, and GuidoWachsmuth. 2015. A Theory of Name Resolution. In Programming
Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in
Computer Science, Vol. 9032), Jan Vitek (Ed.). Springer, 205–231. https://doi.org/10.1007/978-3-662-46669-8_9

OpenJDK. 2021. Java Microbenchmark Harness (JMH). https://openjdk.java.net/projects/code-tools/jmh/
André Pacak, Sebastian Erdweg, and Tamás Szabó. 2020. A systematic approach to deriving incremental type checkers.

Proceedings of the ACM on Programming Languages 4, OOPSLA (2020). https://doi.org/10.1145/3428195
Daniël A. A. Pelsmaeker, Hendrik van Antwerpen, Casper Bach Poulsen, and Eelco Visser. 2022. Language-parametric

static semantic code completion. Proceedings of the ACM on Programming Languages 6, OOPSLA (2022), 1–30. https:
//doi.org/10.1145/3527329

Ganesan Ramalingam and Thomas W. Reps. 1993. A Categorized Bibliography on Incremental Computation. In Proceedings
of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 502–510. https://doi.org/10.
1145/158511.158710

Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. 2020. Knowing when to
ask: sound scheduling of name resolution in type checkers derived from declarative specifications. Proceedings of the
ACM on Programming Languages 4, OOPSLA (2020). https://doi.org/10.1145/3428248

Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. Retrieved 2021-10-15 from http://budiu.info/work/ddlog.pdf
Zhong Shao and Andrew W. Appel. 1993. Smartest Recompilation. In Proceedings of the 20th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. 439–450. https://doi.org/10.1145/158511.158702
David Swasey, Tom Murphy VII, Karl Crary, and Robert Harper. 2006. A separate compilation extension to standard ML. In

Proceedings of the ACM Workshop on ML, 2006, Portland, Oregon, USA, September 16, 2006, Andrew Kennedy and François
Pottier (Eds.). ACM, 32–42. https://doi.org/10.1145/1159876.1159883

Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. 2021. Incremental whole-program analysis in Datalog with lattices. In
PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event,
Canada, June 20-25, 20211, Stephen N. Freund and Eran Yahav (Eds.). ACM, 1–15. https://doi.org/10.1145/3453483.3454026

Tamás Szabó, Sebastian Erdweg, and Markus Völter. 2016. IncA: a DSL for the definition of incremental program analyses.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, David Lo, Sven Apel,
and Sarfraz Khurshid (Eds.). ACM, 320–331. https://doi.org/10.1145/2970276.2970298

Tamás Szabó, Edlira Kuci, Matthijs Bijman, Mira Mezini, and Sebastian Erdweg. 2018. Incremental overload resolution in
object-oriented programming languages. In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops, ISSTA 2018,
Amsterdam, Netherlands, July 16-21, 2018, Julian Dolby, William G. J. Halfond, and Ashish Mishra (Eds.). ACM, 27–33.
https://doi.org/10.1145/3236454.3236485

Beatriz Sánchez, Dimitris S. Kolovos, and Richard F. Paige. 2020. To build, or not to build: ModelFlow, a build solution
for MDE projects. In MoDELS ’20: ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and
Systems, Virtual Event, Canada, 18-23 October, 2020, Eugene Syriani, Houari A. Sahraoui, Juan de Lara, and Silvia Abrahão
(Eds.). ACM, 1–11. https://doi.org/10.1145/3365438.3410942

Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. 2018. Scopes as types. Proceedings of the
ACM on Programming Languages 2, OOPSLA (2018). https://doi.org/10.1145/3276484

Hendrik van Antwerpen and Eelco Visser. 2021. Scope States: Guarding Safety of Name Resolution in Parallel Type
Checkers. In 35th European Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark
(Virtual Conference) (LIPIcs, Vol. 194), Anders Møller and Manu Sridharan (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2021.1

Guido Wachsmuth, Gabriël Konat, Vlad A. Vergu, Danny M. Groenewegen, and Eelco Visser. 2013. A Language Independent
Task Engine for Incremental Name and Type Analysis. In Software Language Engineering - 6th International Conference,
SLE 2013, Indianapolis, IN, USA, October 26-28, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 8225), Martin
Erwig, Richard F. Paige, and Eric Van Wyk (Eds.). Springer, 260–280. https://doi.org/10.1007/978-3-319-02654-1_15

Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser. 2022. Incremental Type-Checking for Free: Artifact. Zenodo.
https://doi.org/10.5281/zenodo.7071393

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

https://doi.org/10.1145/567067.567092
http://resolver.tudelft.nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5
http://resolver.tudelft.nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5
http://resolver.tudelft.nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5
https://doi.org/10.1007/978-3-662-46669-8_9
https://openjdk.java.net/projects/code-tools/jmh/
https://doi.org/10.1145/3428195
https://doi.org/10.1145/3527329
https://doi.org/10.1145/3527329
https://doi.org/10.1145/158511.158710
https://doi.org/10.1145/158511.158710
https://doi.org/10.1145/3428248
http://budiu.info/work/ddlog.pdf
https://doi.org/10.1145/158511.158702
https://doi.org/10.1145/1159876.1159883
https://doi.org/10.1145/3453483.3454026
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/3236454.3236485
https://doi.org/10.1145/3365438.3410942
https://doi.org/10.1145/3276484
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
https://doi.org/10.1007/978-3-319-02654-1_15
https://doi.org/10.5281/zenodo.7071393

140:26 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

A ALGORITHM OVERVIEW

shared scopes 𝑆 ⊂ S
open edges 𝑂 ⊂ S × L

typing 𝑇 ∈ T
snapshot 𝑌 ∈ Y

context-free scope graph G∗ ⊂ G
context-free open edges 𝑂∗ ⊂ S × L

scope graph diff 𝜕G
environment diff 𝛿𝐸 ⊂ S × R

patch 𝑠 ∼ 𝑠 ∈ Π ⊂ S × S
interface TypeChecker

async fun RunLocal(𝑆) : Y
async fun RunInContext(𝑌) : T

interface CompilationUnit
fun FreshScope(𝑑) : S
fun AddEdge(𝑠 , 𝑙 , 𝑠′)
fun CloseEdge(𝑠 , 𝑙)
async fun Query(𝑠 , r , D) : A

𝑚𝑠𝑔 := AddEdge : S × L × S
| CloseEdge : S × L
| Query : Q → (A × Q)
| PQuery : Q → (A × Q)
| Confirm : Q → (Π × Q × Q)?
| Restart
| Release

Fig. 22. Definitions, API’s and messages in the incre-
mental algorithm.

This appendix provides an overview of the algo-
rithm presented in this paper. Fig. 22 provides
additional definitions introduced, as well as the
new interfaces and message definitions. All in-
puts, local state variables and outputs of the
algorithm are shown in Fig. 23. Fig. 24 gives the
full definitions of the entry points of the algo-
rithm (Start and Hold) as well as the Restart
and Release procedures. In the remaining fig-
ures, the other functions and message handlers
of the algorithm are shown, grouped as follows:

• Scope graph construction (Fig. 25).
• Scope graph query resolution (Fig. 26).
• Scope graph diffing (Fig. 27).
• Query confirmation (Fig. 28).
• Mutual dependency resolution (Fig. 29).

Compared to the representations in the main
body of the paper, this overview is more de-
tailed. In addition, 𝑄+, 𝑄− and Π are actor vari-
ables instead of local function variables (such
as in Figs. 8 and 17). This makes them accessi-
ble for the Release message handler in Fig. 29.
Finally, this overview distinguishes between G
and 𝑄 as local variables, and G𝑛 and 𝑄𝑛 as out-
puts of the algorithm. This allows us to treat
local variables as mutable, while maintaining
single-assignment semantics for the outputs.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:27

actor Unit (TC : TypeChecker) : CompilationUnit

input: 𝑆𝑛 current shared scopes

input: G𝑛−1 previous scope graph
input: 𝑄𝑛−1 previous recorded queries
input: 𝑇𝑛−1 previous type-checker result
input: 𝑆𝑛−1 previous shared scopes

input: 𝑌𝑛−1 previous local snapshot
input: G∗

𝑛−1 previous context-free scope graph
input: 𝑂∗

𝑛−1 previous set of open edges on transition to active

var: G scope graph
var: 𝑂 open edges
var: 𝑄 recorded queries

var: 𝜕G (partial) scope graph diff
var: 𝑄+ recorded queries that will be added to 𝑄𝑛

var: 𝑄− recorded queries that will be removed from 𝑄𝑛

var: Π patches accumulated by query confirmation

output: G𝑛 current scope graph
output: 𝑄𝑛 current recorded queries
output: 𝑇𝑛 current type-checker result

output: 𝑌𝑛 current local snapshot
output: G∗

𝑛 current context-free scope graph
output: 𝑂∗

𝑛 current set of open edges on transition to active

Fig. 23. Actor state. Inputs (indicated with input) are values provided by the context in which the algorithm
is used. Variables (var) are mutable variables that are accessible by every function in the actor. Outputs
(output) are values returned to the context. On subsequent invocations, some inputs should be equal to
outputs of the previous iteration.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:28 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

actor Unit (TC : TypeChecker) : CompilationUnit

proc Start()
𝑌𝑛 := await RunLocalTC(𝑆𝑛)
G∗
𝑛 := G

𝑂∗
𝑛 := 𝑂

stateself := active
𝜕G := InitDiff(𝑆𝑛, 𝑆𝑛−1)
𝑇𝑛 := await RunInContextTC(𝑌𝑛)
G𝑛 := G
𝑄𝑛 := 𝑄

proc Hold()
G := G∗

𝑛−1
𝑂 := 𝑂∗

𝑛−1
G∗
𝑛 := G∗

𝑛−1
𝑌𝑛 := 𝑌𝑛−1
𝑂∗
𝑛 := 𝑂∗

𝑛−1
foreach (𝑠, 𝑙) ∈ 𝑂 \𝑂∗

𝑛−1 do
CloseEdge(𝑠 , 𝑙)

foreach (𝑢, 𝑞) ∈ 𝑄𝑛−1 do
if (Π′, 𝑄−′

, 𝑄+′) := await send Confirm(𝑞) to 𝑢 then
𝑄− += 𝑄−′

𝑄+ += 𝑄+′

Π += Π′

else
Restart()
return

Release(𝑄𝑛−1 \𝑄− ∪𝑄+)

proc Restart()
𝜕G := InitDiff(𝑆𝑛, 𝑆𝑛−1)
𝑇𝑛 := await RunInContextTC(𝑌𝑛−1)
G𝑛 := G
𝑄𝑛 := 𝑄

proc Release(𝑄 ′)
G𝑛 := Π(G𝑛−1)
𝑄𝑛 := Π(𝑄 ′)
𝑇𝑛 := Π(𝑇𝑛−1)
foreach (𝑠, 𝑙) ∈ 𝑂 do

CloseEdge(𝑠 , 𝑙)

Fig. 24. Entry points and state transition procedures

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:29

actor Unit (TC : TypeChecker) : CompilationUnit

fun FreshScope(𝑑) : S
𝑠 := a fresh identity
⟨𝑆, 𝐸, 𝜌⟩ := G
G := ⟨𝑆 ∪ {𝑠}, 𝐸, 𝜌 ∪ {𝑠 → 𝑑}⟩
𝑂 += {𝑠} × L
return 𝑠

fun AddEdge(𝑠, 𝑙, 𝑠′)
if owner(𝑠) = self then

assert (𝑠, 𝑙) ∈ 𝑂

⟨𝑆, 𝐸, 𝜌⟩ := G
G := ⟨𝑆, 𝐸 ∪ {𝑠 · 𝑙 · 𝑠′}, 𝜌⟩

else
send AddEdge(𝑠, 𝑙, 𝑠′) to parent

fun CloseEdge(𝑠, 𝑙)
if owner(𝑠) = self then

assert (𝑠, 𝑙) ∈ 𝑂

𝑂 -= {(𝑠, 𝑙)}
else

send CloseEdge(𝑠, 𝑙) to parent

on receive AddEdge(𝑠, 𝑙, 𝑠′)
AddEdge(𝑠, 𝑙, 𝑠′)

on receive CloseEdge(𝑠, 𝑙)
CloseEdge(𝑠, 𝑙)

Fig. 25. Scope graph construction functions and message handlers

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:30 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

actor Unit (TC : TypeChecker) : CompilationUnit

async fun Resolve(G, 𝑞 = ⟨𝑝, r,D⟩) : A
𝑠𝑡 := target(𝑝)
𝑢 := owner(𝑠𝑡)
𝑄 := ∅
if non-localself (𝑠𝑡) then 𝑄 += (𝑢, 𝑞)
if 𝑢 ≠ self then

(𝐴′, 𝑄′) := await send Query(𝑞) to 𝑢
return (𝐴′, 𝑄 ∪𝑄 ′)

𝐴 := ∅
foreach 𝑙 ∈ L such that 𝜕𝑙 r ≠ ∅ do

𝑆 ′ := await getEdges(𝑠𝑡 , 𝑙,G)
foreach 𝑠 ∈ 𝑆 ′ do

(𝐴′, 𝑄′) := await Resolve(𝑝 · 𝑙 · 𝑠, 𝜕𝑙 r,D)
𝐴 += 𝐴′

𝑄 += 𝑄 ′

if 𝜀 ∈ lang(r) ∧ 𝜌 (𝑠𝑡) ∈ D then
𝐴 += (𝑝, 𝜌 (𝑠𝑡))

return (𝐴,𝑄)
async fun Query(𝑠, r,D)

(𝐴,𝑄′) := Resolve(G, ⟨𝑠, r,D⟩)
if 𝑄 ′ ≠ ∅ then

await stateself = active
𝑄 += 𝑄 ′

return 𝐴

on receive Query(𝑞)
return Resolve(G, 𝑞)

Fig. 26. Scope graph query resolution functions and message handlers

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:31

actor Unit (TC : TypeChecker) : CompilationUnit

fun InitDiff(𝑆𝑛, 𝑆𝑛−1)
𝑆∼ := zip(𝑆𝑛, 𝑆𝑛−1)
D := ScopeGraphDiffing(𝑆∼)
return DiffD()

algorithm ScopeGraphDiffing

input: 𝑆∼ initial matches

var: 𝑆∼ ⊂ 𝑆𝑛 × 𝑆𝑛−1 := 𝑆∼ matched scopes
var: 𝑆− ⊂ 𝑆𝑛−1 := ∅ removed scopes
var: 𝑆+ ⊂ 𝑆𝑛 := ∅ added scopes

var: 𝐸∼ ⊂ 𝐸𝑛 × 𝐸𝑛−1 := ∅ matched edges
var: 𝐸− ⊂ 𝐸𝑛−1 := ∅ removed edges
var: 𝐸+ ⊂ 𝐸𝑛 := ∅ added edges

var: 𝑍 ⊂ E𝑛 × E𝑛−1 = ∅ queue of matches

output: 𝜕G scope graph diff

async fun Diff()

foreach 𝑠𝑛 ∼ 𝑠𝑛−1 ∈ 𝑆∼ do
ScheduleEdges(𝑠𝑛 , 𝑠𝑛−1)

while (𝑒𝑛, 𝑒𝑛−1) := await dequeue(𝑍) do
TryMatch(𝑒𝑛 , 𝑒𝑛−1)

𝜕G := Finalize()

proc ScheduleEdges(𝑠𝑛 , 𝑠𝑛−1)
foreach 𝑙 ∈ L do

𝐸𝑛 := await getEdges(𝑠𝑛, 𝑙,G)
𝐸𝑛−1 := getEdges(𝑠𝑛−1, 𝑙,G𝑛−1)
foreach (𝑠′𝑛, 𝑠′𝑛−1) ∈ 𝐸𝑛 × 𝐸𝑛−1 do

if can-match(𝑠′𝑛, 𝑠′𝑛−1) then
𝑒𝑛 := 𝑠𝑛 · 𝑙 · 𝑠′𝑛
𝑒𝑛−1 := 𝑠𝑛−1 · 𝑙 · 𝑠′𝑛−1
𝑍 += (𝑒𝑛, 𝑒𝑛−1)

proc TryMatch(𝑒𝑛 , 𝑒𝑛−1)
𝑠′𝑛 := target(𝑒𝑛), 𝑠′𝑛−1 := target(𝑒𝑛−1)
if Consistent(𝑠′𝑛, 𝑠′𝑛−1) then

𝐸∼ += 𝑒𝑛 ∼ 𝑒𝑛−1
𝑆∼ += 𝑠′𝑛 ∼ 𝑠′

𝑛−1
ScheduleEdges(𝑠′𝑛 , 𝑠

′
𝑛−1)

if 𝑒𝑛 ∉ 𝐸∼ ∧ 𝑒𝑛 ∉ dom(𝑍) then 𝐸+ += 𝑒𝑛

if 𝑒𝑛−1 ∉ 𝐸∼ ∧ 𝑒𝑛−1 ∉ ran(𝑍) then 𝐸− += 𝑒𝑛−1

fun Consistent(𝑠𝑛, 𝑠𝑛−1) : Bool
return 𝑠𝑛 ∼ 𝑠𝑛−1 ∈ 𝑆∼ ∨ (𝑠𝑛 ∉ dom(𝑆∼) ∧ 𝑠𝑛−1 ∉ ran(𝑆∼))

fun Finalize() : 𝜕G
𝑆+ := 𝑆𝑛 \ dom(𝑆∼)
𝑆− := 𝑆𝑛−1 \ ran(𝑆∼)
return (𝑆∼, 𝑆+, 𝑆−, 𝐸∼, 𝐸+, 𝐸−)

Fig. 27. Scope graph diffing algorithm

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:32 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

actor Unit (TC : TypeChecker) : CompilationUnit

async fun EnvDiff(𝑠𝑛−1, r , 𝜕G) : Π × 𝛿𝐸+ × 𝛿𝐸−

if owner(𝑠) ≠ self then
return (∅, ∅, ∅)

(𝑠𝑛, 𝐸∼, 𝐸+, 𝐸−) := await diff(𝜕G, 𝑠𝑛−1)
𝛿𝐸+ := ∅
𝛿𝐸− := ∅
Π := { 𝑠𝑛 ∼ 𝑠𝑛−1 }
foreach 𝑠𝑛 · 𝑙 · 𝑠′𝑛 ∼ 𝑠𝑛−1 · 𝑙 · 𝑠′𝑛−1 ∈ 𝐸∼ such that 𝜕𝑙 r ≠ ∅ do

(Π′, 𝛿𝐸+
′
, 𝛿𝐸−

′) := await EnvDiff(𝑠′
𝑛−1, 𝜕𝑙 r, 𝜕G)

Π += Π′

𝛿𝐸+ += 𝛿𝐸+
′

𝛿𝐸− += 𝛿𝐸−
′

𝛿𝐸+ += { (𝑠′𝑛, 𝜕𝑙 r) | 𝑠𝑛 · 𝑙 · 𝑠′𝑛 ∈ 𝐸+ }
𝛿𝐸− += { (𝑠′

𝑛−1, 𝜕𝑙 r) | 𝑠𝑛−1 · 𝑙 · 𝑠
′
𝑛−1 ∈ 𝐸− }

return (Π, 𝛿𝐸+, 𝛿𝐸−)

async fun Confirm(𝑠𝑛−1, r , D, 𝜕G) : (P(Q𝑛−1) ×P(Q𝑛) × Π)?
𝑄− := ∅
𝑄+ := ∅
(Π, 𝛿𝐸+, 𝛿𝐸−) := await EnvDiff(𝑠𝑛−1, r, 𝜕G)
foreach (𝑠𝑡 , r′) ∈ 𝛿𝐸+ do

(𝑄 ′, 𝐴) := await send Query(𝑠𝑡 , r′,D) to owner(𝑠𝑡)
if 𝐴 ≠ ∅ then

return ⊥
else

𝑄+ += 𝑄 ′

foreach (𝑠𝑡 , r′) ∈ 𝛿𝐸− do
(𝑄 ′, 𝐴) := await send PQuery(𝑠𝑡 , r′,D) to owner(𝑠𝑡)
if 𝐴 ≠ ∅ then

return ⊥
else

𝑄− += 𝑄 ′

return (𝑄−, 𝑄+,Π)
on receive Confirm(⟨𝑠, r,D⟩)

await stateself = active
return Confirm(𝑠, r,D, 𝜕G)

on receive PQuery(𝑞)
return Resolve(G𝑛−1, 𝑞)

Fig. 28. Functions and message handlers for query confirmation

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:33

actor Unit (TC : TypeChecker) : CompilationUnit

proc ResolveCycles(𝑈)

if ∀𝑢 ∈ 𝑈 . state𝑢 ≠ unknown then
ResolveCyclesRegular(𝑈)

else if ∀𝑢 ∈ 𝑈 . state𝑢 = unknown ∨ state𝑢 = released then
foreach 𝑢 ∈ 𝑈 such that state𝑢 = unknown do

send Release() to 𝑢
else

foreach 𝑢 ∈ 𝑈 such that state𝑢 = unknown do
send Restart() to 𝑢

on receive Restart()
Restart()

on receive Release()
Release(𝑄𝑛−1 \𝑄− ∪𝑄+)

Fig. 29. Procedure and message handlers for mutual dependency resolution

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:34 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

B VERSION CONTROL SYSTEM BENCHMARK DATASET DETAILS
Table 2 shows the details of the commits that were used for the Version Control Benchmarks
(Section 8.3). For the Java projects, only the ‘production’ code (in directory src/main/java) was
used. The table gives the number of files and the LOC of each project6. The given number is the real
number of lines of code, without comments or blank lines. The ‘Changed Units’ column indicates
the units that were changed. Between the brackets, the number of changed lines is indicated. Similar
to the ‘LOC’ column, only real lines of code are counted.
Incremental analysis does not result in a restart of an unchanged unit for any of the commits.

This is expected, because restarts usually lead to new (removed) errors in the type-checker result.
Before committing, a developer will fix those. Therefore, units that would be restarted now end up
edited, and are thus immediately started.

Table 2. Details of the version control system benchmarks

Project Files Commit Hash LOC (old) Changed Units

Commons-CSV 11 1 724c43f 1859 CSVFormat (+4/-21)
2 4dc996e 1842 CSVFormat (+2/-2)
3 64bae17 1842 CSVFormat (+1/-2)

Commons-IO 179 1 394158d 13921 FileSystemUtils (+7/-7)
2 ea7ccc5 13921 IOUtils (+26/-15)

CopyUtils (+1/-1)
3 0d83a9d 13932 BufferedFileChannelInputStream (+16/-5)

Commons-Lang3 216 1 397a2c8 29771 BooleanUtils (+13/-7)
2 789f88e 29777 ThreadUtils (+116/-116)
3 a98a6a9 29777 ObjectUtils (+5)

ThreadUtils (+8)
DurationUtils (+10)

Reposearch 35 1 8fd3467 4195 reposearch.app (+2/-2)
manage-ui.app (+1/-1)
manage-data.app (+3/-3)

2 ccbf85a 4195 manage-data.app (+1/-1)
3 a147129 4208 manage-data.app (+11/-1)

entry.app (+14/-8)
project.app (-3)

YellowGrass 74 1 d00462c 7103 gcaptcha.app (+2/-2)
2 95b6430 7103 issue-model.app (+20/-10)

register.app (+3/-1)
members.app (+13/-5)
project-model.app (+1)
settings.app (+1)
question-emails.app (+16/-8)
webservices.app (+1/-1)

3 b2060c1 7133 register.app (+1/-3)

6For the Java projects, the number of files and LOC were measured with cloc (https://github.com/AlDanial/cloc). For the
WebDSL projects, the number of files was measured using find . -name "*.app" | wc -l after initializing the git
submodules. The lines of code were measured by subtracting the blank lines (measured using grep -rnw . -e ’ˆ\s*\.*$’
--include=’*.app’ | wc -l) and comments (measured using grep -rnw . -e ’ˆ\s*\/\/.*$’ --include=’*.app’
| wc -l) fron the total line count (measured using grep -rnw . -e ’.*’ --include=’*.app’ | wc -l).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

https://github.com/apache/commons-csv/commit/724c43fe4e0ce559ae7effc3be82d01d5f1f3a00
https://github.com/apache/commons-csv/commit/4dc996e315b2bd3d0fcec04901eac311d546e56c
https://github.com/apache/commons-csv/commit/64bae1731766dfba45eec76b26e4af837b24effa
https://github.com/apache/commons-io/commit/394158da4a719ba6beb56692145124d9d2f00583
https://github.com/apache/commons-io/commit/ea7ccc5ce9a089b75d512c7c511473bd27be2a79
https://github.com/apache/commons-io/commit/0d83a9dbfb8475b802036483d3ee95bd705d1e86
https://github.com/apache/commons-lang/commit/397a2c8044188433e39c68e4c025f1f64119dde0
https://github.com/apache/commons-lang/commit/789f88eaa21d91a0c75389af46d16fc06986972a
https://github.com/apache/commons-lang/commit/a98a6a99d9415c116087b07f1d777dbe20b889da
https://github.com/webdsl/reposearch/commit/8fd3467e6e25986a2b7ae9e823773342239567a2
https://github.com/webdsl/reposearch/commit/ccbf85a9e33ebf0a7f94afdc63a1e726386eaf62
https://github.com/webdsl/reposearch/commit/a1471290af87cff75c12c742a86f67f8ee9e6c38
https://github.com/webdsl/yellowgrass/commit/d00462cece95489207fae5353bbb7511939abedf
https://github.com/webdsl/yellowgrass/commit/95b6430061ff485e7afd126a90931e4fffdaf4de
https://github.com/webdsl/yellowgrass/commit/b2060c1a0409ced262b28185edc151df27c4d78c
https://github.com/AlDanial/cloc

Incremental Type-Checking for Free 140:35

B.1 Apache Commons Benchmarks
The absolute running times of the Apache Commons benchmarks are shown in Table 3. These
runtimes are plot in Fig. 30 as well.

Table 3. Absolute runtimes of Apache Commons benchmarks. NI columns contain non-incremental (baseline)
runtimes, while I columns denote the incremental runtimes. All values are given in seconds.

Cores 1 2 4 8 16

Mode C I NI I NI I NI I NI I

Project Commit

Commons-CSV 1 8.147 5.363 4.872 4.331 4.265 4.051 4.228 3.859 3.866 3.926
2 8.320 5.231 4.802 4.410 4.386 3.881 4.123 3.859 4.102 4.031
3 7.578 4.799 5.075 4.467 4.559 4.179 4.009 3.929 4.203 3.796

Commons-IO 1 52.367 4.657 30.835 4.774 18.021 3.690 11.499 2.446 11.493 2.008
2 50.881 13.396 27.135 10.010 19.408 7.615 11.600 7.505 10.006 7.622
3 59.036 5.066 27.740 4.431 17.363 3.568 11.226 3.019 11.322 1.739

Commons-Lang3 1 123.663 6.718 71.568 5.917 47.318 4.659 36.555 3.976 35.846 3.018
2 128.657 6.039 71.537 4.729 42.898 3.015 32.219 3.179 32.164 1.708
3 127.877 8.907 79.203 6.345 42.773 5.703 32.829 4.182 32.579 3.404

Fig. 30. Absolute runtimes of Apache Commons benchmarks

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:36 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

B.2 WebDSL Benchmarks
Table 4 shows the absolute runtimes of the WebDSL benchmarks, which are plot in Fig. 31.

Table 4. Absolute runtimes of WebDSL benchmarks. NI columns contain non-incremental (baseline) runtimes,
while I columns denote the incremental runtimes. All values are given in seconds.

Cores 1 2 4 8 16

Mode NI I NI I NI I NI I NI I

Project Commit

YellowGrass 1 35.248 2.172 21.730 1.840 12.407 1.433 8.755 0.929 7.695 0.722
2 38.548 15.390 24.354 10.203 12.501 8.376 8.997 6.385 7.833 6.236
3 35.993 2.787 25.540 1.961 12.598 1.664 8.942 1.327 7.684 1.099

Reposearch 1 27.986 8.487 16.933 5.912 11.414 4.544 9.476 4.762 8.780 4.820
2 28.015 3.835 16.901 4.130 11.332 4.074 9.928 3.639 8.563 3.768
3 28.250 5.952 16.753 5.544 11.326 4.815 9.661 5.068 8.438 4.760

Fig. 31. Absolute runtimes of WebDSL benchmarks

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

Incremental Type-Checking for Free 140:37

B.3 Synthetic Benchmarks
The runtimes of the synthetic benchmarks are shown in Table 5, and plot in Fig. 32.

Table 5. Absolute runtimes of synthetic benchmarks. NI columns contain non-incremental (baseline) runtimes,
while I columns denote the incremental runtimes. All values are given in seconds.

Cores 1 2 4 8 16

Mode NI I NI I NI I NI I NI I

Project Payload

Const-Change-No-Refs None 0.162 0.197 0.139 0.174 0.142 0.151 0.139 0.133 0.144 0.163
Small 4.615 0.180 3.146 0.130 2.277 0.155 1.496 0.166 1.473 0.176

Medium 15.133 0.230 9.665 0.192 5.775 0.166 3.905 0.164 3.267 0.198
Large 76.701 0.540 42.611 0.317 25.280 0.393 17.214 0.213 11.937 0.230

Const-Change-10-Refs None 0.326 0.236 0.234 0.183 0.170 0.127 0.178 0.132 0.169 0.159
Small 4.418 0.240 2.959 0.176 2.220 0.163 1.523 0.164 1.522 0.199

Medium 16.857 0.239 10.390 0.200 5.381 0.181 4.015 0.185 3.101 0.212
Large 80.217 0.659 42.259 0.340 25.409 0.337 16.082 0.244 11.887 0.244

Superfield-Change None 0.258 0.210 0.229 0.183 0.168 0.185 0.160 0.150 0.173 0.161
Small 5.044 0.220 2.794 0.156 2.328 0.164 1.499 0.171 1.539 0.179

Medium 15.452 0.258 8.846 0.209 5.484 0.177 3.674 0.185 3.001 0.187
Large 77.535 0.614 41.935 0.354 24.883 0.343 16.566 0.268 12.786 0.248

New-Overload None 0.292 0.212 0.212 0.163 0.162 0.147 0.149 0.177 0.147 0.161
Small 4.391 0.247 3.098 0.168 2.236 0.155 1.486 0.154 1.490 0.179

Medium 15.378 0.252 8.590 0.208 5.423 0.183 4.010 0.165 3.019 0.211
Large 72.988 0.592 42.889 0.338 24.858 0.329 16.231 0.256 12.057 0.241

Change-Extends None 0.300 0.210 0.174 0.191 0.155 0.155 0.146 0.130 0.160 0.143
Small 4.466 0.219 3.133 0.164 2.198 0.186 1.520 0.184 1.612 0.212

Medium 15.146 0.254 9.981 0.215 6.051 0.191 4.366 0.210 3.262 0.223
Large 73.953 0.631 43.566 0.340 25.526 0.309 16.129 0.255 12.345 0.243

Precedence-Takeover None 0.321 0.223 0.175 0.175 0.176 0.136 0.169 0.142 0.189 0.152
Small 4.829 0.200 2.852 0.176 2.291 0.146 1.491 0.155 1.575 0.166

Medium 15.863 0.258 9.594 0.183 5.810 0.199 4.214 0.201 2.817 0.208
Large 87.937 0.597 42.756 0.347 27.151 0.287 18.768 0.240 12.043 0.244

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

140:38 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser

Fig. 32. Absolute runtimes of synthetic benchmarks

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 140. Publication date: October 2022.

	Abstract
	1 Introduction
	2 Background: Type-Checking Multi-Unit Projects with Scope Graphs
	2.1 Name Binding using Scope Graphs
	2.2 Scope Graphs for Compilation Units
	2.3 Executing Type-Checkers Concurrently

	3 Algorithm Outline
	4 Detecting Changed Queries using Environment Diffing
	4.1 Which Queries Require Confirmation?
	4.2 Using Environment Diffs to Release Units
	4.3 Confirmation Example

	5 Context-Free Snapshots
	6 Resolving Mutual Dependencies
	6.1 Resolving Mutual Dependencies Involving Units in State Unknown
	6.2 Unsoundness of Transitive Confirmation

	7 Scope Graph Diffing
	7.1 Scope Graph Diffing Algorithm
	7.2 Patch Collection and Application

	8 Evaluation
	8.1 Accuracy of Scope Graph Diffing
	8.2 Synthetic Benchmarks
	8.3 Version Control History Benchmarks

	9 Related Work
	9.1 Principles of Incremental Analysis
	9.2 Incremental Type-Checkers
	9.3 Language-Parametric Incremental Type-Checking
	9.4 Incrementality in Other Domains

	10 Conclusion
	Acknowledgments
	References
	A Algorithm Overview
	B Version Control System Benchmark Dataset Details
	B.1 Apache Commons Benchmarks
	B.2 WebDSL Benchmarks
	B.3 Synthetic Benchmarks

